
 

 

  

 

Standard Coding Guidelines 

Variable naming and coding style guidelines for 

open source code development 
 

James Ritchie Carroll 

3/30/2011 



 

2 
 

 

Table of Contents 

Introduction _________________________________________________________________ 3 

Definitions _______________________________________________________________________ 3 

Style Guidelines ______________________________________________________________ 4 

Tabs & Indenting __________________________________________________________________ 4 

Bracing __________________________________________________________________________ 4 

Single Line Statements ______________________________________________________________ 6 

Commenting ______________________________________________________________________ 6 

File Headers ______________________________________________________________________________ 6 

Documentation Comments __________________________________________________________________ 7 

Comment Style ____________________________________________________________________________ 8 

Spacing __________________________________________________________________________ 8 

Regions __________________________________________________________________________ 9 

Implementation of IDisposable ______________________________________________________ 10 

Naming _________________________________________________________________________ 12 

General _________________________________________________________________________________ 12 

PascalCase vs. camelCase __________________________________________________________________ 13 

Namespace Names ________________________________________________________________________ 14 

Class Names _____________________________________________________________________________ 14 

Variable Names __________________________________________________________________________ 14 

Parameter Names ________________________________________________________________________ 15 

Event Names _____________________________________________________________________________ 16 

Enumeration Names_______________________________________________________________________ 16 

Method Names ___________________________________________________________________________ 17 

Property Names __________________________________________________________________________ 17 

Interface Names __________________________________________________________________________ 17 

Object Names ____________________________________________________________________________ 17 

Solution Names __________________________________________________________________________ 17 

Interop Methods _________________________________________________________________ 18 

File Organization _________________________________________________________________ 18 

  



 

3 
 

Introduction 

Coding standards can significantly reduce the cost of software development for organizations with many 

developers. Standards make code easier to maintain and can improve the readability of code across all 

projects in an organization, both of which keep development costs lower. This document describes 

coding practices followed by the Grid Protection Alliance and the Tennessee Valley Authority open 

source code distributions which are applied to all public code for consistency, readability and 

maintainability.  

The standards and naming conventions defined in this document assume C#.NET as the development 

language and use the .NET Framework Design Guidelines as a starting point. 

Disclaimer: Some of the information in this document has been pulled together from various different 

sources, it should not be considered a completely original work. 

Definitions 
Camel case is a casing convention where the first letter is lower-case, words are not separated by any 

character but have their first letter capitalized. In this standard camelCase is used for any local variable 

and parameter name. Example: thisIsCamelCased.  

Pascal case, also known as upper camel case, is a casing convention where the first letter of each word 

is capitalized, and no separating character is included between words. In this standard PascalCase is 

used for any public or protected method or property name. Example: ThisIsPascalCased. 

Hungarian notation is an identifier naming convention in computer programming, in which the name 

of a variable or function indicates its type or intended use. In this standard, Hungarian notation is 

avoided. Example: strName. 

  

http://en.wikipedia.org/wiki/CamelCase
http://c2.com/cgi/wiki?PascalCase
http://en.wikipedia.org/wiki/Hungarian_notation


 

4 
 

Style Guidelines 

Tabs & Indenting 
Tab characters (\0x09) should not be used in code. All indentation should be done with 4 space 

characters. Converting the Tab key to spaces can be set automatically inside Visual Studio:

 

Bracing 
Open braces should always be at the beginning of the line after the statement that begins the block. 

Contents of the brace should be indented by 4 spaces. For example: 

if (type == typeof(bool)) 
{ 
    // Handle booleans as a special case to allow numeric entries as well as true/false 
    return (T)((object)value.ParseBoolean()); 
} 
else 
{ 
    if (type == typeof(IConvertible)) 
    { 
        // This is faster for native types than using type converter... 
        return (T)Convert.ChangeType(value, type, culture); 
    } 
    else 
    { 



 

5 
 

        // Handle objects that have type converters (e.g., Enum, Color, Point, etc.) 
        TypeConverter converter = TypeDescriptor.GetConverter(type); 
        return (T)converter.ConvertFromString(null, culture, value); 
    } 
} 
 

 “case” statements should be indented from the switch statement like this: 

switch (protocol.ToLower()) 
{ 
    case "tcp": 
        server = new TcpServer(settings.ToString()); 
        break; 
    case "udp": 
        server = new UdpServer(settings.ToString()); 
        break; 
    default: 
        throw new ArgumentException("Protocol \'" + protocol + "\' is not valid"); 
} 

 

Braces can only be considered optional when there is only one line of following code. Even so, code 

following the statement should always be on the next line - not on the same line. If one side of an if/else 

statement needs braces, use braces on both sides. For example: 

// This is OK: 
if (ServerStarted != null) 
    ServerStarted(this, EventArgs.Empty); 
 
// This is *NOT* OK: 
if (ServerStarted != null) ServerStarted(this, EventArgs.Empty); 
 
 
 
// This is OK: 
if (value && !Enabled) 
    Start(); 
else if (!value && Enabled) 
    Stop(); 
 
// This is *NOT* OK: 
if (value && !Enabled) Start(); else if (!value && Enabled) Stop(); 
 
 
 
// This is OK: 
if (processInterval == RealTimeProcessInterval) 
{ 
    m_processingIsRealTime = true; 
} 
else 
{ 
    m_processTimer = new System.Timers.Timer(); 
    m_processTimer.Elapsed += ProcessTimerThreadProc; 
} 
 



 

6 
 

// This is *NOT* OK: 
if (processInterval == RealTimeProcessInterval) 
    m_processingIsRealTime = true; 
else 
{ 
    m_processTimer = new System.Timers.Timer(); 
    m_processTimer.Elapsed += ProcessTimerThreadProc; 
} 
 

Single Line Statements 
Single line statements are code blocks that have braces that begin and end on the same line. Although 

they may look more compact, for the sake of readability and consistency with existing code, single line 

statements should be avoided: 

// This is OK: 
public virtual bool RequeueOnTimeout 
{ 
    get 
    { 
        return m_requeueOnTimeout; 
    } 
    set 
    { 
        m_requeueOnTimeout = value; 
    } 
} 
 
// This is *NOT* OK: 
public virtual bool RequeueOnTimeout 
{ 
    get { return m_requeueOnTimeout;  } 
    set { m_requeueOnTimeout = value; } 
} 
 

Commenting 
Comments should be used to describe intention, algorithmic overview, and/or logical flow with the goal 

that if from reading the comments alone, someone other than the author could understand a function’s 

intended behavior and general operation. There is no such thing as too much commenting. All code 

needs some level of commenting to reflect the programmer’s intent and approach. 

File Headers 

Each file should start with the standard header and copyright notice.  For the Grid Protection Alliance, 

the header is as follows: 

//****************************************************************************************************** 
//  Foo.cs - Gbtc 
// 
//  Copyright © 2010, Grid Protection Alliance.  All Rights Reserved. 
// 
//  Licensed to the Grid Protection Alliance (GPA) under one or more contributor license agreements. See 



 

7 
 

//  the NOTICE file distributed with this work for additional information regarding copyright ownership. 
//  The GPA licenses this file to you under the Eclipse Public License -v 1.0 (the "License"); you may 
//  not use this file except in compliance with the License. You may obtain a copy of the License at: 
// 
//      http://www.opensource.org/licenses/eclipse-1.0.php 
// 
//  Unless agreed to in writing, the subject software distributed under the License is distributed on an 
//  "AS-IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. Refer to the 
//  License for the specific language governing permissions and limitations. 
// 
//  Code Modification History: 
//  ---------------------------------------------------------------------------------------------------- 
//  03/29/2011 - J. Ritchie Carroll 
//       Generated original version of source code. 
// 
//****************************************************************************************************** 

 
For the Tennessee Valley Authority, the header looks like this: 

//******************************************************************************************************* 
//  Foo.cs - Gbtc 
// 
//  Tennessee Valley Authority, 2009 
//  No copyright is claimed pursuant to 17 USC § 105.  All Other Rights Reserved. 
// 
//  This software is made freely available under the TVA Open Source Agreement (see below). 
//  Code in this file licensed to TVA under one or more contributor license agreements listed below.  
// 
//  Code Modification History: 
//  ----------------------------------------------------------------------------------------------------- 
//  03/29/2011 - Pinal C. Patel 
//       Original version of source code generated. 
// 
//******************************************************************************************************* 

 

The TVA open source agreement and any contributor license agreements often follow for code being 

maintained and distributed by TVA. 

Either of the headers can be automatically inserted in the document using a standard macro. 

Documentation Comments 

All public and protected elements (methods, properties, events, delegates, enumerations, constants, 
etc.) should use fully populated XML documentation comments. Private elements must have a comment 
also but can use a non-structured simple // comment.  As a matter of style, periods are not normally 
used within short intra-method code comments.  Full standard punctuation is used for any structured 
comments since these comments are used to produce automated documentation: 
 
/// <summary> 
/// Represents a proper commenting example. 
/// </summary> 
public class Foo 
{ 
    /// <summary> 
    /// Releases all the resources used by the <see cref="Foo"/> object. 
    /// </summary> 
    public void Dispose() 
    { 
 

http://openpdc.codeplex.com/SourceControl/changeset/view/64837#501274


 

8 
 

        // Call the protected dispose method to release resources 
        Dispose(true); 
        GC.SuppressFinalize(this); 
    } 
} 
 

 In cases where you need to move the XML documentation to an external file, use of the <include> tag 
is allowed. However enough local non-structured simple // comments still need to exist to guide the 
reader about the author's intent without having to go track down the external documentation. 
 
    /// <include file='doc\Foo.uex' path='docs/doc[@for="Foo.MyMethod"]/*' /> 
    // Releases the unmanaged resources used by the Foo object and 
    // optionally releases the managed resources. 
    public void Dispose() 
    { 
        Dispose(true); 
        GC.SuppressFinalize(this); 
    } 
 

Comment Style 

The // (two slashes) style of comment tags should be used in most situations (that is, instead of the 
/* start/stop comment */ style) . Where ever possible, place comments above the code 

instead of beside it. Here are some examples: 
 
    // Load settings from config file 
    LoadSettings(); 
 
    // See if this computer is part of a domain 
    if (UserInfo.MachineIsJoinedToDomain) 
    { 
 

Comments can also be placed at the end of a line when space allows: 

// Fields 
private FrameQueue m_frameQueue;   // Queue of frames to be published 
private int m_framesPerSecond;     // Frames per second 
private double m_lagTime;          // Allowed past time deviation tolerance, in seconds 
private double m_leadTime;         // Allowed future time deviation tolerance, in seconds 
 

Spacing 
Spaces improve readability by decreasing code density. Here are some guidelines for the use of space 

characters within code: 

 Use a single space after a comma between function arguments: 

Right:  Console.In.Read(myChar, 0, 1); 

Wrong:   Console.In.Read(myChar,0,1);  

 Use a single space before flow control statements: 

Right:  while (x == y) 

Wrong:   while(x==y)  



 

9 
 

 Use a single space before and after comparison operators: 

Right:  if (x == y) 

Wrong:   if (x==y)  

 Do not use a space after the parenthesis and function arguments: 

Right:   CreateFoo(myChar, 0, 1) 

Wrong:   CreateFoo( myChar, 0, 1 )  

 Do not use spaces between a function name and parenthesis: 

Right:   CreateFoo() 

Wrong:   CreateFoo ()  

 Do not use spaces inside brackets: 

Right:   x = dataArray[index]; 

Wrong:   x = dataArray[ index ];  

Regions 
All code should use the following code regions for any non-static class: 

    public class Foo 
    { 
        #region [ Members ] 
 
        // Nested Types 
 
        // Constants 
 
        // Delegates 
 
        // Events 
 
        // Fields 
 
        #endregion 
 
        #region [ Constructors ] 
 
        #endregion 
 
        #region [ Properties ] 
 
        #endregion 
 
        #region [ Methods ] 
 
        #endregion 
 
        #region [ Operators ] 
 
        #endregion 
 
        #region [ Static ] 
 
        // Static Fields 



 

10 
 

 
        // Static Constructor 
 
        // Static Properties 
 
        // Static Methods 
 
        #endregion         
    } 
 

Unused regions should be removed. The region code can automatically be applied using the "regions 

snippet". 

Additionally, an "[ Enumerations ]" region is used to encapsulate enumeration definitions and is 

located above the class that initially or primarily uses the enumeration: 

    #region [ Enumerations ] 
 
    /// <summary> 
    /// Indicates the current state of the client. 
    /// </summary> 
    public enum ClientState 
    { 
        /// <summary> 
        /// Client is establishing connection. 
        /// </summary> 
        Connecting, 
        /// <summary> 
        /// Client has established connection. 
        /// </summary> 
        Connected, 
        /// <summary> 
        /// Client connection is terminated. 
        /// </summary> 
        Disconnected 
    } 
 
    #endregion 
 

Implementation of IDisposable  
Classes using any member variable that implements IDisposable should themselves implement 

IDisposable. Failing to properly implement the recommended dispose pattern for classes can lead to 

memory leaks and abnormal termination exceptions. The proper implementation of IDisposable can be 

setup easily using the "idisposable snippet". If you are overriding a base class or component that 

already implements IDisposable, you can use the "disposec snippet" instead. After using the snippet, 

make sure code segments end up in their proper regions:  the m_disposed private member variable 

should be in "[ Members ]" region under "// Fields",  the destructor (~class()) should be located in the 

"[ Constructors ]" region, and finally both "Dispose()" methods should be the first methods under 

"[ Methods ]" region. Here is a fully implemented example: 

http://openpdc.codeplex.com/SourceControl/changeset/view/64837#501278
http://openpdc.codeplex.com/SourceControl/changeset/view/64837#501278
http://msdn.microsoft.com/en-us/library/system.idisposable.aspx
http://openpdc.codeplex.com/SourceControl/changeset/view/64837#501639
http://openpdc.codeplex.com/SourceControl/changeset/view/64837#501276


 

11 
 

 
/// <summary> 
/// Represents a proper implementation example of <see cref="IDisposable"/>. 
/// </summary> 
public class Foo : IDisposable 
{ 
    #region [ Members ] 
 
    // Fields 
    private FileStream m_cache;    // Stream object for file cache 
    private bool m_disposed;       // Disposed flag 
 
    #endregion 
 
    #region [ Constructors ] 
 
    /// <summary> 
    /// Creates a new instance of <see cref="Foo"/>. 
    /// </summary> 
    public Foo() 
    { 
        m_cache = new FileStream("local.cache", FileMode.OpenOrCreate); 
    } 
 
    /// <summary> 
    /// Releases <see cref="Foo"/> object resources. 
    /// </summary> 
    ~Foo() 
    { 
        Dispose(false); 
    } 
 
    #endregion 
 
    #region [ Methods ] 
 
    /// <summary> 
    /// Releases all the resources used by the <see cref="Foo"/> object. 
    /// </summary> 
    public void Dispose() 
    { 
        Dispose(true); 
        GC.SuppressFinalize(this); 
    } 
 
    /// <summary> 
    /// Releases the unmanaged resources used by the <see cref="Foo"/> object. 
    /// </summary> 
    /// <param name="disposing">true to release both managed and unmanaged resources; 
false to release only unmanaged resources.</param> 
    protected virtual void Dispose(bool disposing) 
    { 
        if (!m_disposed) 
        { 
            try 
            { 
                if (disposing) 
                { 



 

12 
 

                    if (m_cache != null) 
                        m_cache.Dispose(); 
                    m_cache = null; 
                } 
            } 
            finally 
            { 
                m_disposed = true;  // Prevent duplicate dispose. 
            } 
        } 
    } 
 
    #endregion 
} 
 

Naming 
Make names long enough to be meaningful but short enough to avoid excessive verbosity, but do not 

abbreviate. Programmatically, a unique name serves only to differentiate one item from another but 

expressive names function as an aid to a human reader; therefore, it makes sense to provide a detailed 

name that a human reader can comprehend. A summary of the naming conventions in this standard 

include: 

 Use a "m_" prefix for private member variables 

 Use a "s_" prefix for private static variables 

 Use camelCase for private member variables  

 Use PascalCase for internal, protected or public member variables  

 Use camelCase for parameters  

 Use camelCase for local variables  

 Use PascalCase for function, property, event, and class names  

 Prefix interfaces names with I 

 Do not use Hungarian notation  

 Do not abbreviate  

 Do not prefix enums, classes, or delegates with any letter  

The goal is to produce consistent source code appearance (especially with existing code) and clean 

readable source. Code legibility should be the primary objective. 

General 

 Use PascalCase for class, method, property and constant names. 

 In object-oriented languages, it is redundant to include class names in the name of class 

properties, such as Book.BookTitle. Instead, use Book.Title. 

 In cases where a name is composed of multiple sections separated by periods (i.e., assembly 

names), sections that are only one or two letters in length should have all letters capitalized 

(e.g., IO or UI). 



 

13 
 

 Except for industry acceptable abbreviations and acronyms (e.g., TVA, Xml) or common technical 

abbreviations and acronyms (e.g., Usb, Dvd), avoid using abbreviations. Is OK to use common, 

well-known acronyms to replace lengthy phrase names (such as, UI).  

 Other abbreviations should be avoided - such as, avoid using Min or Max - instead spell these 

words out (i.e., Minimum or Maximum) for clarity and consistency with existing code. Use the 

following motto to help you remember: "if in doubt, spell it out". 

 When using an accepted abbreviation, use it consistently. An abbreviation should have only one 

meaning and likewise, each abbreviated word should have only one abbreviation. For example, 

if you use UI to abbreviate UserInterface, do so everywhere and do not use UI to also 

abbreviate UniversalInterface. 

 Avoid using abbreviations in identifiers or parameter names. 

 When naming functions, include a description of the value being returned, such as 

GetCurrentWindowName(). 

 Use the verb-noun method for naming routines that perform some operation on a given object, 

such as CalculateInvoiceTotal(). 

 File and folder names, like procedure names, should accurately describe their purpose. 

 All overloads should perform a similar function. For those languages that do not permit function 

overloading, establish a naming standard that relates similar functions. 

 Avoid elusive names that are open to subjective interpretation, such as AnalyzeThis() for a 

routine, or xxK8 for a variable. Such names contribute to ambiguity more than abstraction. It is 

better to be as descriptive as possible 

 Avoid reusing the same name for different elements, such as a routine called ProcessSales() 

and a variable called processSales.  

 When naming elements, avoid commonly misspelled words. Also, be aware of differences that 

exist between regional spellings, such as color/colour and check/cheque. Use U.S. English as the 

default for spelling. 

 Avoid reserved keywords for class or method names. 

 Avoid typographical marks to identify data types, such as $ for strings or % for integers. 

PascalCase vs. camelCase 

Since most names are constructed by concatenating several words, use mixed-case formatting to 

simplify reading them. In addition, to help distinguish between variables and routines, use Pascal casing 

(e.g., CalculateInvoiceTotal) for routine names where the first letter of each word is capitalized. For 

variable and parameter names, use camel casing (e.g., documentFormatType) where the first letter of 

each word except the first is capitalized. 

Everything that is publicly exposed (i.e., public, protected, or internal) should be in Pascal case with no 

underscore characters (_). 

The only underscore characters that should ever be used are only on the private "m_" or "s_" prefix for 

member variables or static variables respectively. 



 

14 
 

Namespace Names 

 Use Pascal case for namespaces, and separate logical components with periods. 

 Do not create two namespaces with names that differ only by case. 

 Do not use the same name for a namespace and a class. 

 Do not use the underscore character (_) unless it would used as a substitute for a period in the 

namespace (e.g., the namespace for IEEE C37.118 would be IeeeC37_118). 

Class Names 

 Use a noun or noun phrase to name a class. 

 Avoid using Class names that duplicate commonly used .NET Framework namespaces, such as: 

System, Collections, Forms, or UI. 

 Do not use a type prefix, such as C, on a class name. 

 Do not use the underscore character (_). 

 Names for exception classes should end with the suffix "Exception". 

 Names for custom attribute classes should end with the suffix "Attribute". 

 Name an event argument class with the "EventArgs" suffix. 

 Abstract classes should end with the suffix "Base". 

Variable Names 

 Do not use Hungarian notation prefixes on variable names (e.g., intCount) 

 Avoid using acronyms when naming variables, except for variables with two or fewer letters or 

industry acceptable acronyms (e.g., Xml).  

 Start the name of private member variables with "m_". 

 Start the name of private static variables with "s_". 

 Append computation qualifiers (Average, Summary, Minimum, Maximum, Index) to the end of a 

variable name where appropriate.  

 Use complementary pairs in variable names, such as Minimum/Maximum, Begin/End and 

Open/Close.  

 Boolean variable names should contain Is which implies Yes/No or True/False values, such as 

fileIsFound.  

 Use nouns, noun phrases or abbreviations of nouns to name static fields. 

 Avoid using terms such as Flag when naming status variables, which differ from boolean 

variables in that they may have more than two possible values. Instead of documentFlag, use a 

more descriptive name such as documentFormatType.  

 Variables should not contain the type name as part of the variable name (e.g., use name instead 

of nameString.) 



 

15 
 

 Even for a short-lived variable that may appear in only a few lines of code, still use a meaningful 

name. The only exception to this should be the use of single-letter variable names (e.g., i, j, k, 

or x, y, z) for short-loop indexes.  

 When applicable, do not use literal numbers or strings when named constants or enumerations 

are available (e.g., NumberOfDaysInWeek  instead of 7) for ease of maintenance and 

understanding. 

Note:  General practice is to avoid using protected or public member variables. Using a private member 

variable with an associated property is the preferred implementation (see example below). Exceptions 

can be made for extremely simple classes, private classes or in cases of optimization. 

/// <summary> 
/// Represents a proper implementation of a member variable. 
/// </summary> 
public class Foo 
{ 
    #region [ Members ] 
 
    // Fields 
    private bool m_enabled;     // Enabled flag 
 
    #endregion 
 
    #region [ Properties ] 
 
    /// <summary> 
    /// Gets or sets enabled state for <see cref="Foo"/>. 
    /// </summary> 
    public bool Enabled 
    { 
        get 
        { 
            return m_enabled; 
        } 
        set 
        { 
            m_enabled = value; 
        } 
    } 
 
    #endregion 
} 
 

Parameter Names 

 Use camel case for parameter names. 

 Use descriptive parameter names. Parameter names should be descriptive enough that the 

name of the parameter and its type can be used to determine its meaning in most scenarios. 

 Use names that describe a parameter’s meaning rather than names that describe a parameter’s 

type. 



 

16 
 

Event Names 

 Consider naming events with a verb. 

 Use a gerund (the “-ing” form of a verb) to create an event name that expresses the concept of 

pre-event, and a past-tense verb to represent post-event (e.g., Closing and Closed). 

 Do not use a prefix or suffix "On" for an event declaration on the type. For example, do use 

Close instead of OnClose. The "On" prefix is used for protected methods that raise the event for 

the benefit of inherited classes, for example:  

        /// <summary> 
        /// Raises the <see cref="ConnectionAttempt"/> event. 
        /// </summary> 
        protected virtual void OnConnectionAttempt() 
        { 
            m_currentState = ClientState.Connecting; 
 
            if (ConnectionAttempt != null) 
                ConnectionAttempt(this, EventArgs.Empty); 
        } 
 

Note: Event implementations should not use reserved parameters. Event implementations should use 

the standard EventHandler syntax, for example: 

/// <summary> 
/// Occurs when the client has successfully sent data to the server. 
/// </summary> 
[Category("Data"), 
Description("Occurs when the client has successfully sent data to the server.")] 
public event EventHandler SendDataComplete; 
 
/// <summary> 
/// Occurs when an <see cref="Exception"/> is encountered sending data to the server. 
/// </summary> 
/// <remarks> 
/// <see cref="EventArgs{T}.Argument"/> is the <see cref="Exception"/> encountered. 
/// </remarks> 
[Category("Data"), 
Description("Occurs when an Exception is encountered when sending data to the server.")] 
public event EventHandler<EventArgs<Exception>> SendDataException; 

  

Enumeration Names 

 Name enumerations with nouns or noun phrases, or adjectives that describe behavior. 

 For enumerations representing distinct items, do not make the enumeration name plural. 

 For enumerations representing related items (such as bit flags that can be OR'd together), make 

the enumeration name plural. 

 Do not prefix parameter names with Hungarian type notation. 

 Do not use an enum suffix on enum type names. 

 Do not use the underscore character (_). 



 

17 
 

Note: the FlagsAttribute should always be added to enumerations representing bit flags. 

Method Names 
 Use verbs or verb phrases to name methods. 

 Do not prefix parameter names with Hungarian type notation. 

 Do not use the underscore character (_). 

Property Names 

 Use nouns or noun phrases to name properties. 

 Consider naming a property with the same name as its underlying type. 

 Do not use Hungarian notation prefixes on property names. 

Interface Names 

 Name interfaces with nouns or noun phrases, or adjectives that describe behavior. 

 Interface names should begin with the prefix I. 

 Use similar names when defining a class/interface pair where the class is a standard 

implementation of the interface. The names should differ only by the letter I prefix on the 

interface name and/or Base suffix for abstract classes. 

 Do not use the underscore character (_). 

Object Names 

 Starting with the default name for controls,  replace the control sequence number with a more 

descriptive name (e.g. replace Button1 with ButtonSaveFile). 

Solution Names 

Create the SourceSafe Solution folder for the entire application with all relevant project folders 

underneath.  For example, one would expect to find the public class "System.Windows.Forms.Control" 

in the file system as System\Windows\Forms\Control.cs. 

When creating or changing an application’s folder, use complete names whenever possible, including 

spaces (no underscores), for the folder names. 

Avoid using acronyms and abbreviations when naming folders, unless the application’s name is too long. 

For example, the application “Writing New Code” would be stored in the folder “Writing New Code”, not 

in “WNC”. 

http://msdn.microsoft.com/en-us/library/system.flagsattribute.aspx


 

18 
 

Interop Methods 
Methods used as interop wrappers (e.g., DllImport statements) are currently contained to the 

TVA.Interop.WindowsApi static class. An exception has been made for naming conventions for  

elements (e.g., structures, enumerations and constants) within this class to allow named consistency 

with their Win32 counterparts. It is suggested that if new API calls are needed that they be added to this 

existing class for containment and isolation. 

 

File Organization 
 Source files should contain only one public class type. 

 Care should be taken so that the public class name and the file name match. 

 Enumerations and delegates should normally appear above the class with primary association. 

 All source code files should include a standard header. 

 Using statements should come after the header and before the namespace declaration. 

 Using statements should be sorted and relevant (i.e. right click anywhere in the source code and 

select Organize Usings / Remove and Sort) 

 Standard regions should be used in all non-static classes. 

 Non-standard regions should be avoided unless code is large and the regions are helping with 

extra organization. 

 Static classes typically define no regions. 

 Directory names should follow the namespace hierarchy for the class. 

 


