
Getting Started with PlatformIO

Introduction 1

Integrated Development Environments 3

PlatformIO 5
Visual Studio Code 6

Installing PlatformIO with VS Code 7
Linux Installation 7
Mac OS X Installation 9
Microsoft Windows 10 Installation 11
Install PlatformIO Plugin for VS Code 15

PlatformIO Basics 16
Creating Your First Project 17
main.cpp File 19
Arduino Uno Blink Test 20
ESP32 Blink 22
Seeeduino XIAO with Serial Monitor 24

Using Libraries with PlatformIO 26
Library Management – Arduino IDE 27
Library Management – PlatformIO 28
Dual Servo Library Demo 30
Using The Library Manager 38
platformio.ini File 40

Conclusion 43
Resources 44

It's time to look at a more advanced development environment for programming our

microcontrollers, so today we’ll take a look at PlatformIO.

It’s a bit of a learning curve, but well worth it, as PlatformIO has many advantages over

using the Arduino IDE. I’ll show you how to set it up and how to use it with the Arduino

Uno, ESP32, and Seeeduino XIAO.

Introduction

When we begin working with the Arduino one of the first steps is to install the Arduino

IDE (Integrated Development Environment). It’s a fundamental piece of software that

runs on Linux, Windows, or Mac OSX and it allows us to program our little

microcontroller wonders to do just about anything.

The Arduino IDE has a lot going for it. It’s very easy to use, especially for beginners,

and it comes with a great assortment of sample sketches to get you going. By adding

additional Boards Managers you can use it for more than just Arduino boards. And,

https://dronebotworkshop.com
1

because it’s so popular, you’ll find an abundance of information to assist you on the web

and on YouTube (and, of course, here on the DroneBot Workshop!).

But for all of its glory, the Arduino IDE does have many shortcomings.

● It lacks a debugger, a tool that allows you to insert breakpoints into your code
and then observe the state of key variables when these points are reached.

● It requires you to manually determine which USB or serial port your
microcontroller is connected to, sometimes (especially with Linux or Mac OSX)
this is not obvious.

● It does not provide help such as auto-complete or built-in references to allow you
to catch errors before you compile.

● It cannot be integrated with a code repository, such as GitHub.

For beginners, many of those features, like the debugger and Git integration, are not

essential. But beginners can still benefit from features like auto-complete and an

integrated code reference, as they help anyone write code with fewer errors.

Enter ​PlatformIO​.

https://dronebotworkshop.com
2

https://platformio.org/PlatformIO

PlatformIO has those missing features, along with many more. So it is certainly worth

taking a look at, no matter what your level of coding experience.

Before we begin, let’s run over a few features common to many IDE’s.

Integrated Development Environments

Developing code, whether it be for microcontrollers, mobile devices or desktop

platforms, requires a number of common steps:

● You need to use some form of text editor to write the code in the desired
programming language. The most common languages for writing microcontroller
code are C++ and Python (or microPython).

● That text needs to be converted into machine-readable code, suitable for your
target device. This is a job for either a ​compiler​ or an ​interpreter​, depending upon
which language you are using,

● That machine-readable code is then uploaded to the target device. In the case of
interpreted languages, such as Python, the editor interfaces directly with the
device and an interpreter translates the code every time it is run.

https://dronebotworkshop.com
3

https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Interpreter_(computing)

You can use a basic text editor and a command-line utility to do all of the above, but

most people find it easier to use specialized GUI-based tools.

The Arduino IDE has all of the features you need to compose, compile, and upload

code to your target microcontroller. It also has a Serial Monitor to observe activity on the

microcontroller and to exchange commands with it. It can manage libraries and you can

add alternate microcontrollers to it.

Sounds like it has all we need. So why switch?

Well despite all of its features the Arduino IDE is really just a basic IDE, and it is missing

a lot of features that advanced editors and IDEs have. Things like auto-complete, which

can save you some typing, inline error checking to catch your mistakes as you make

them, and an onboard reference to help you understand your code.

https://dronebotworkshop.com
4

PlatformIO has more features than the Arduino IDE, features that make it much easier

to create and troubleshoot your code.

PlatformIO

According to the PlatformIO documentation​ “​PlatformIO is a cross-platform,

cross-architecture, multiple framework, professional tool for embedded systems

engineers and for software developers who write applications for embedded products​.”

Put another way, this is a development tool that can run on most operating systems and

under many different code editor packages. A few of the editors it runs under are:

● Visual Studio Code (VS Code)
● Atom
● Codeblocks
● Eclipse
● Netbeans
● Sublime Text

https://dronebotworkshop.com
5

https://docs.platformio.org/en/latest/what-is-platformio.html

It can also be run on cloud-based packages like Codeanywhere and Eclipse Che.

We will be running it under Microsoft Visual Studio Code, a free development platform

available for Linux, Windows and Mac OS X.

Visual Studio Code

While many people don’t associate Microsoft with free software they actually have

created several free products, many of them development environments.

● Visual Studio Community​ is a free IDE for developing iOS, Android, Windows
and web applications.

● Visual Studio Dev Essentials​ is a collection of tools, cloud services and software
trials.

And, of course, ​Visual Studio Code​, the free open-source code editor that can run on

any operating system. This is the product that we will be running PlatformIO under.

https://dronebotworkshop.com
6

https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/dev-essentials/
https://code.visualstudio.com/

Visual Studio Code includes IntelliSense, an advanced auto-complete and syntax

highlighting system that can assist you in creating better code without errors. This

allows you to catch and correct coding errors before you compile your code.

It also has a debugger, a software diagnostic tool that allows you to troubleshoot code

that isn’t working the way you expect it to. This is a more advanced feature that we

won’t be examining today.

One of the greatest features of Visual Studio Code, or VS Code, is that it supports

extensions​. These extensions allow you to add additional functionality to VS Code,

enabling you to use VS Code for virtually any platform and coding language.

PlatformIO is an extension to VS Code.

Installing PlatformIO with VS Code

As we will be using the PlatformIO extension for VS Code the first thing we will need to

do is get Visual Studio Code installed.

Another requirement for using PlatformIO is to have Python version 3.5 or higher

installed.

The installation procedure differs depending upon your operating system, but it’s pretty

easy. Follow the instructions for your OS.

Linux Installation

There are two ways (at least) to install VS Code and Python on Linux.

● Use the Snap Store snap. This also requires the installation of a Python Virtual
Environment.

● Install from the file downloaded from the VS Code website. In most cases, the
native Python on your Linux distribution will work without updating.

https://dronebotworkshop.com
7

https://code.visualstudio.com/docs/editor/extension-gallery

I described the first installation method, using the Snap store, in the article and video I

published for Building a Developers Linux Workstation. So rather than repeat myself I’ll

refer you to that article if you want to use the Snap store. This method has the

advantage of the VS Code updates being applied automatically when you do a system

update.

The second method is to grab the installation file from the ​Visual Studio Code website​.

The site should defaut to the correct installation files for your operating system, but if

you want a different version you can also go to the ​downloads section​ at the bottom of

the page.

For Ubuntu and other Debian-based distributions of Linux, you’ll want to grab the .deb

file. If you’re running a derivative of RedHat Linux then the .rpm file is what you need.

If you’re running Ubuntu then you can just click on the .deb file once it finishes

downloading. The Software Installer will open and you can click Install to begin the

installation process.

https://dronebotworkshop.com
8

https://code.visualstudio.com/
https://code.visualstudio.com/#alt-downloads

You’ll need to authenticate first, then the installer will add VS Code to your system.

With this type of installation method that’s really all there is to it, as you likely already

have Python 3. To verify this open a Terminal and type the following:

This will display your current version of Python 3. As long as it is at least version 3.5 you

are good to go.

You can now skip ahead to the PlatformIO plugin installation procedures.

Mac OS X Installation

Installation of VS Code on Mac OS X is pretty simple, you’ll be installing both VS Code

and Python 3.

The first step is to visit the ​VS Code Website​ and download the application for Mac OS

X, it should default to that when you load the page.

https://dronebotworkshop.com
9

1 python3 --version

https://code.visualstudio.com/

The download is a complete application, and you can run it directly as soon as it is

installed. It would probably be a good idea to move it from your downloads folder into a

more appropriate folder, like Applications.

The first time you run VS Code you’ll need to agree to trust it, as it is a file downloaded

from the Internet.

After getting Visual Studio Code you’ll need to install Python.

Head over to the ​Python website downloads page​. As with the VS Code website you

should see a big button to download an installation package with the latest version of

Python for the Mac.

This time you are downloading a package that you will need to install. Follow the

instructions and accept the license agreement and the installer will run.

When the installer has finished you have an option to put the original install package

into the trash, which is probably a good idea.

https://dronebotworkshop.com
10

https://www.python.org/downloads/

After you complete the Python installation, open your Terminal and use the same

command we used in Linux to check the current version of Python:

This will print back the version of Python, which should (hopefully) be above version 3.5.

You are now ready to proceed to the installation of the PlatformIO plugin, detailed in a

bit.

Microsoft Windows 10 Installation

The Windows 10 installation is also very simple. As with the Mac, you’ll need to install

both VS Code and Python 3.

Once again you need to grab the installation program from the ​Visual Studio Code

website​. Click on the file you downloaded to start installing VS Code.

As with most Windows programs you’ll need to select a location to install your new

software and decide if you want it placed in the Start menu, unless you have a specific

reason for changing these you can just accept the default settings. You’ll also need to

accept a license agreement.

https://dronebotworkshop.com
11

1 python3 --version

https://code.visualstudio.com/
https://code.visualstudio.com/

One thing that is very important is to leave the box for “Add to PATH” checked on the

Select Additional Tasks​ dialog box. You may select other choices here as well.

After making all your selections VS Code will begin to install. The installation can take a

bit of time, so please be patient!

https://dronebotworkshop.com
12

Once the installation is finished you have the option of opening Visual Studio Code, you

may wish to do that just to ensure that everything installed correctly.

But we aren’t done yet, we still need to install Python.

You can head over to the Python Download Page on python.org to get the installation

file. One thing to note is that the processor you are using may not accept the 64-bit

version of Python, even if you are running 64-bit Windows. You can then choose to grab

the latest version of the 32-bit version of Python, it will work fine with PlatformIO.

https://dronebotworkshop.com
13

On the dialog box with the “Install Now” selection, you’ll see a checkbox allowing you to

“​Add Python 3.x to Path​”. You must have that selected for PlatformIO to function

correctly.

After selecting the checkbox you can click “Install Now” and the installation will begin.

https://dronebotworkshop.com
14

Once Python is installed you are all set to add the PlatformIO plugin to Visual Studio

Code.

Install PlatformIO Plugin for VS Code

The instructions here apply to any operating system.

Open Visual Studio Code. You’ll initially be greeted with a welcome screen that outlines

some of the features of VS Code. You can close this screen after you finish examining

it.

On the left side of the VS Code interface you’ll see a number of icons. As you move

your mouse over these icons their functions will be displayed.

The bottom icon (assuming you haven’t installed any plugins yet) is shaped like a group

of squares, this is the Extensions icon. Click on it, this will open another pane where you

can search for extensions.

https://dronebotworkshop.com
15

TYpe “platformio” in the search box. One of the items in the results will be “PlatformIO

IDE”. There will be a blue “Install” button beside the search result. Click on it to install

PlatformIO.

The PlatformIO plugin installation will take a little while, so be patient and don’t do

anything in VS Code while it is installing. You can monitor the installation progress on

the lower right side of the screen, at one point during the installation the Terminal area

will also display some information.

Once the installation is finished you will need to close and reopen Visual Studio Code.

When you open VS Code it will check all of its extensions, including PlatformIO. After it

is done you are ready to use PlatformIO.

PlatformIO Basics

https://dronebotworkshop.com
16

When you first start Visual Studio Code with the PlatformIO extension you’ll be greeted

by the PlatformIO Home screen. If you don’t see it look for a small icon on the bottom

taskbar shaped like a “house” and click on it.

The Home screen displays the version of PlatformIO and also has a ​Quick Access

section, which we will use to start our first project.

Before we get to that let’s examine some of the other icons down the side of the

PlatformIO screen.

● Home​ – You have already seen this, it has the current version and the ​Quick
Access​ box that allows you to create new projects.

● Projects​ – A list of all the projects you have created. You can edit these to add
descriptions.

● Inspect – This allows you to inspect a project for statistics like memory utilization.
● Libraries​ – This is the Library Manager, which we will describe in detail later on

in this article.
● Boards​ – A list of the boards supported by PlatformIO. As of this writing, there

are over 900.
● Platforms ​– Platforms like the ArduinoAVR, Espressif ESP32, and others are

listed here. The list will grow as you build projects with new boards.
● Devices​ – A list of the boards that are currently attached to your computer. This

is built up automatically so you don’t need to select the port, unlike the Arduino
IDE.

Creating Your First Project

In PlatformIO your “sketches” are actually part of a “project”, the term “sketches” is not

used here.

All of the resources required for your project are contained in one place, this includes

libraries and code files.

https://dronebotworkshop.com
17

Go back to your PlatformIO Home screen and click the New Project button. This will

launch the Project Wizard.

The Project Wizard makes it very easy to create all of the initial files required for a

PlatformIO project. You will need to supply the following information:

● Project Name​ – Obviously the name of your project!
● Board​ – The type of microcontroller board you are using.
● Framework​ – The framework must match the board, and PlatformIO will

determine this automatically for you once you select a board.
● Location​ – Where you want your files stored. You can just leave this checked to

accept the default location or uncheck it to choose a specific one.

Selecting a board may appear to be quite daunting, as PlatformIO has over 900 of

them! But you certainly don’t need to scroll through the list manually, just start typing the

bard name and the search will be narrowed down to one or more matching selections.

https://dronebotworkshop.com
18

After you make the selections for your board PlatformIO will set up the files for your new

project. If this is the first time you have used this type of board it will need to grab

several files from the Internet, so you may have to wait a minute for it to finish.

Subsequent selection of the same board will be much quicker, as it only has to do this

once per board.

main.cpp File

One of the first big differences between PlatformIO and the Arduino IDE is the type of

files you’ll be coding.

In the Arduino IDE, most of your files use the ​.ino​ extension. When you start a new

project in the Arduino IDE you typically name the main file something like “mycode.ino”.

When you first save it the IDE will place it in a folder called “mycode”.

In PlatformIO there are a number of files created for a project. The principal one is

called ​main.cpp​. The ​.cpp ​extension means “C++”, the language you are coding in.

You will keep all of your code files in a subdirectory called ​src​, which is an abbreviation

for “source”.

On the left side pane, you should see your project listed, and beneath it, you’ll see a

number of subdirectories. Expand the ​src ​subdirectory by clicking on it and you should

see a ​main.cpp​ file. Click on this file to open it in the editor window.

https://dronebotworkshop.com
19

You will notice that the main.cpp file already has a line in it that reads as follows:

This line must be present in every program you write for microcontrollers using the

Arduino framework, including non-Arduino boards like the ESP32. PlatformIO will

automatically insert this line into the main.cpp file for you. If you are copying some

existing Arduino code you can paste it underneath it.

Arduino Uno Blink Test

Let’s start with the “Hello World” program for microcontrollers – the infamous Blink!

Connect an Arduino Uno to one of your USB ports to follow along.

Here is Blink, modified for PlatformIO with the inclusion of the ​Arduino.h​ library:

https://dronebotworkshop.com
20

1 #include “Arduino.h”

https://dronebotworkshop.com
21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

#include <Arduino.h>

/*

 Simple Blink sketch

 simple-blink.cpp

 Use for PlatformIO demo

 From original Arduino Blink Sketch

 https://www.arduino.cc/en/Tutorial/Blink

 DroneBot Workshop 2021

 https://dronebotworkshop.com

*/

// Set LED_BUILTIN if undefined or not pin 13

// #define LED_BUILTIN 13

void setup()

{

 // Initialize LED pin as an output.

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop()

{

 // Set the LED HIGH

 digitalWrite(LED_BUILTIN, HIGH);

 // Wait for a second

 delay(1000);

The code hardly needs any description, it’s basically the Blink sketch you know and love

(or at least know), using the constant LED_BUILTIN to represent the Arduino’s onboard

LED, which is connected to pin 13. Note that the definition of LED_BUILTIN is remarked

out, as the Arduino Uno framework already knows it.

As with the Arduino IDE, you’ll need to compile the code, and then upload it to your

Arduino Uno.

Compiling the code is done using the PlatformIO Build button, which is a checkmark on

the lower toolbar. Click on the checkmark and observe the progress in the terminal

window. The code should compile successfully.

The next step is to upload it to the Arduino. Click on the key next to the Build key, the

one shaped like an arrow. This is the Upload key. Once again I’ll point out that we never

had to tell PlatformIO which USB port we had our Arduino connected to, it figures it out

by itself.

PlatformIO will upload the compiled code to the Arduino, and you should see the

familiar flashing LED as a result.

ESP32 Blink

Now that we have seen how to compile and upload code using PlatformIO let’s change

our microcontroller board.

https://dronebotworkshop.com
22

32

33

34

35

36

37

 // Set the LED LOW

 digitalWrite(LED_BUILTIN, LOW);

 // Wait for a second

 delay(1000);

}

Remove the Arduino Uno and hook up an ESP32 board, pretty well any ESP32 board

will do. After you have done that go back to the PlatformIO Home page and start a new

project with the Quick Access ​New Project​ button.

Give your project a name and type “esp32” into the ​Board​ textbox. A list of ESP32

boards will be displayed. Scroll through the list until you find a board that matches

yours.

Note that the Framework will be filled in as “Arduino”, this is correct as despite our

board using an ESP32 processor we are still using the Arduino framework to program it.

Once again you’ll need to wait while the required support files are downloaded and

installed. When that task is completed you will see a new project on the left pane, right

below the first project.

Expand the src subdirectory and open the main.cpp file for editing. It will look identical

to the one we opened for the Arduino.

Now paste the same Blink code into the main.cpp file in your editor. After that hit the

Build button (checkmark) to compile it.

This time you’ll get an error, and the code will fail to compile. And there is a good

reason for that!

https://dronebotworkshop.com
23

The error is produced because the constant LED_BUILTIN is not predefined for the

ESP32. In addition, the ESP32 board uses a different pin for the built-in LED.

In order to fix this, you’ll need to unremark the definition of LED_BUILTIN, as well as

change its value from “13” to an appropriate pin number. On my ESP32 that is pin 2.

Once you make those changes you can Build and Upload the code, and your ESP32

will start flashing its approval!

Seeeduino XIAO with Serial Monitor

I repeated the Blink code, this time with a project for the Seeeduino XIAO.

LED_BUILTIN is already a predefined constant on the XIAO, so it will run correctly.

I then modified the code, as just blinking was getting a bit boring, and I added

statements to print the LED state to the Serial monitor.

https://dronebotworkshop.com
24

You can follow the steps I took in the video accompanying this article, starting at the

21:09 mark. Pay attention to how PlatformIO “assisted” me when writing the code for

the serial monitor. This is actually part of the Visual Studio Code​ ​Intellisense feature I

mentioned earlier.

My final code looked like this:

https://dronebotworkshop.com
25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

#include <Arduino.h>

/*

 Simple Blink sketch

 simple-blink.cpp

 Use for PlatformIO demo

 From original Arduino Blink Sketch

 https://www.arduino.cc/en/Tutorial/Blink

 DroneBot Workshop 2021

 https://dronebotworkshop.com

*/

// Set LED_BUILTIN if undefined or not pin 13

// #define LED_BUILTIN 13

void setup()

{

 // Initialize LED pin as an output.

 pinMode(LED_BUILTIN, OUTPUT);

 Serial.begin(9600);

}

Compile and upload the code to your Seeeduino XIAO, and as you might expect the

onboard LED will start blinking. But how do we see the Serial Monitor?

On the taskbar on the bottom of the IDE there is an icon that looks like a “plug”, this is

the PlatformIO Serial Monitor. Click the icon and the Terminal area will switch to a serial

monitor, and you’ll be able to observe the LED state here.

And if you’re using the Seeeduino XIAO keep in mind that a HIGH turns off the LED,

which is backward from the Arduino Uno!

To close the Serial Monitor hit Ctrl-C (command-C on a Mac). Then hit your Enter key

(or any other key, it really doesn’t matter). This will close the Serial Monitor and display

the Terminal again.

Using Libraries with PlatformIO

https://dronebotworkshop.com
26

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

void loop()

{

 // Set the LED HIGH

 digitalWrite(LED_BUILTIN, HIGH);

 Serial.println("HIGH");

 // Wait for a second

 delay(1000);

 // Set the LED LOW

 digitalWrite(LED_BUILTIN, LOW);

 Serial.println("LOW");

 // Wait for a second

 delay(1000);

}

One task we need to know how to perform is to use libraries with PlatformIO.

In PlatformIO libraries work a bit differently than they do with the Arduino IDE, although

you also have the option of using them in the same way.

Library Management – Arduino IDE

In the Arduino IDE we have a Library Manager. This has access to thousands of

Arduino libraries, and we can search for them and install them into our IDE.

Libraries installed in the Arduino IDE are available for every Arduino sketch. So, for

example, if we install Version 1 of our library in the IDE and we have four sketches ALL

of the sketches have access to that library.

If we upgrade that library to Version 2 then all of our sketches have Version 2.

https://dronebotworkshop.com
27

While this may seem to be a good thing it sometimes can cause problems:

● If we copy our code to another computer that doesn’t have the required library
the code will fail.

● If we base our code on Version 1 it is possible that Version 2 will break it.
● If we find another library that has the same name as our first one we can’t use it

unless we remove the original one.

PlatformIO handles libraries in a different fashion.

Library Management – PlatformIO

In PlatformIO libraries are managed on a per-project basis. You install your libraries into

your project, not into the whole IDE.

So, to repeat our last example, we have PlatformIO with four projects.

https://dronebotworkshop.com
28

In the above example, we have Version 1 of our library bound to both Project 1 and

Project 3. The other two projects do not need this library.

https://dronebotworkshop.com
29

Now we have updated Project 1 to use Version 2 of our library. We have also added

Version 2 to Project 4. But Project 3 has not been updated, perhaps we are concerned

that it may break due to changes in the new version. PlatformIO allows you to do this.

So the big difference in PlatformIO is that you add your libraries to the Project, not to the

whole IDE.

BTW, when you use the Arduino framework you already get all the built-in libraries that

the Arduino has. And, like the Arduino IDE, they are available for all of your projects.

Dual Servo Library Demo

To illustrate this I’m going to put together a small project, one with an Arduino Uno, a

couple of servo motors, a PCA9685 16-channel I2C servo driver, and a 2×16 LCD

display with an I2C backpack.

The PCA9685 and the LCD display will require libraries, and we will also need the

Arduino Wire library as well. So it’s a good demo for using libraries, plus it’s a cool little

project.

You can hook everything up as shown here:

https://dronebotworkshop.com
30

Once you have everything hooked up we will need some code.

We will start another new project using the Project Wizard and choose an Arduino Uno

for our board. The code we will need to put into ​main.cpp​ is as follows:

https://dronebotworkshop.com
31

https://dronebotworkshop.com
32

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

/*

 Servo Motor Controller Demo for PlatformIO

 servo-control-demo.cpp

 Controls 2 servo motors, uses PCA9685 PWM Controller

 Displays status on 16x2 LCD

 Uses LiquidCrystal PCF8574 LCD Library

 Uses Adafruit PWM library

 Uses 2 potentiometers

 Uses I2C LCD Display

 DroneBot Workshop 2021

 https://dronebotworkshop.com

*/

// Include Arduino framework

#include <Arduino.h>

// Include PCF8574 Library for I2C LCD

#include <LiquidCrystal_PCF8574.h>

// Include Wire Library for I2C Communications

#include <Wire.h>

// Include Adafruit PWM Library

#include <Adafruit_PWMServoDriver.h>

// Define I2C Address - change if required

const int i2c_addr = 0x3F;

// Define LCD object

LiquidCrystal_PCF8574 lcd(i2c_addr);

https://dronebotworkshop.com
33

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

// PWM Parameter Definitions

#define MIN_PULSE_WIDTH 650

#define MAX_PULSE_WIDTH 2350

#define FREQUENCY 50

// Define PWM object

Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver();

// Define Potentiometer Inputs

int control0 = A0;

int control1 = A1;

// Define Motor Outputs on PCA9685 board

int motor0 = 0;

int motor1 = 1;

// Define Motor position variables

int mtrDegree0;

int mtrDegree1;

// Define Motor previous position variables

int mtrPrevDegree0 = 0;

int mtrPrevDegree1 = 0;

// Variable to determine if display needs updating

boolean updatedisplay = 0;

// Function to move motor to specific position

void moveMotorDeg(int moveDegree, int motorOut)

{

https://dronebotworkshop.com
34

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

 int pulse_wide, pulse_width;

 // Convert to pulse width

 pulse_wide = map(moveDegree, 0, 180, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);

 pulse_width = int(float(pulse_wide) / 1000000 * FREQUENCY * 4096);

 //Control Motor

 pwm.setPWM(motorOut, 0, pulse_width);

}

// Function to convert potentiometer position into servo angle

int getDegree(int controlIn)

{

 int potVal,srvDegree;

 // Read values from potentiometer

 potVal = analogRead(controlIn);

 // Calculate angle in degrees

 srvDegree = map(potVal, 0, 1023, 0, 180);

 // Return angle in degrees

 return srvDegree;

}

void setup()

{

 // Setup PWM Controller object

 pwm.begin();

 pwm.setPWMFreq(FREQUENCY);

https://dronebotworkshop.com
35

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

 // Set display type as 16 char, 2 rows

 lcd.begin(16,2);

 //Turn on the LCD Backlight

 lcd.setBacklight(255);

 // Clear the display

 lcd.clear();

 lcd.home();

 // Print on first row of LCD

 lcd.setCursor(0,0);

 lcd.print("Servo 0: 0");

 // Print on second row of LCD

 lcd.setCursor(0,1);

 lcd.print("Servo 1: 0");

 // Start Serial Monitor

 Serial.begin(19200);

}

void loop() {

 //Control Servo Motor 0

 // Get desired position

 mtrDegree0 = getDegree(control0);

 // Move motor only if control position has changed

https://dronebotworkshop.com
36

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

 if (mtrDegree0 != mtrPrevDegree0) {

 // Move motor

 moveMotorDeg(mtrDegree0,motor0);

 // Update motor moved variable

 updatedisplay = 1;

 // Update previous position

 mtrPrevDegree0 = mtrDegree0;

 }

 //Control Servo Motor 1

 // Get desired position

 mtrDegree1 = getDegree(control1);

 // Move motor only if control position has changed

 if (mtrDegree1 != mtrPrevDegree1){

 // Move motor

 moveMotorDeg(mtrDegree1,motor1);

 // Update motor moved variable

 updatedisplay = 1;

 // Update previous position

 mtrPrevDegree1 = mtrDegree1;

 }

 // Update display if required

 if (updatedisplay == 1) {

 // Clear the display

 lcd.clear();

 lcd.home();

You can try to compile the code right now with the Build button, however, you won’t be

successful. The reason is probably pretty obvious, you haven’t installed the libraries.

https://dronebotworkshop.com
37

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

 // Print on first row of LCD

 lcd.setCursor(0,0);

 lcd.print("Servo 0: ");

 lcd.print(mtrDegree0);

 // Print on second row of LCD

 lcd.setCursor(0,1);

 lcd.print("Servo 1: ");

 lcd.print(mtrDegree1);

 }

 // Print to Serial Monitor

 Serial.print("Motor 0: ");

 Serial.print(mtrDegree0);

 Serial.print("\t");

 Serial.print("Motor 1: ");

 Serial.println(mtrDegree1);

 // Reset the motor moved variable

 updatedisplay = 0;

 // Add short delay

 delay(100);

}

To do that you’ll need to use the PlatformIO Library Manager.

Using The Library Manager

Open the PlatformIO Home screen, remember you can ghetto it with the little

“house-shaped” icon on the bottom taskbar. You can also find it by clicking the

PlatformIO icon on the left panel of VS Code and looking in ​Quick Access​ for ​Home​.

The library manager is the fourth icon down, you can’t miss it as it’s labeled Libraries!

Click on the icon to open it.

You’ll see a search box where you can search for your required library. It’s a pretty

advanced search, you can input the library name, its file name, or the name of the

component you need a library for.

Our servo project requires the following libraries:

● LiquidCrystal PCF8574 LCD Library
● Adafruit PWM library

Search for the first library. You’ll see it displayed prominently among the results. Click

on the desired library, and its details will be displayed. Note that you also get sample

code and versioning information with the library.

There is an Add to Project button that you can use to add the library to your project.

Click on it and find the project you need to add it to, note that the project you are

currently working on will be displayed first.

https://dronebotworkshop.com
38

When the library is added a message will be displayed, congratulating you on

accomplishing your task!

Click the Library Manager icon again to search for the second library, and repeat the

same steps to add it to the project.

Now go back into the ​main.cpp​ for the project and try compiling it again. This time it will

compile successfully, and you can upload it to the Arduino.

https://dronebotworkshop.com
39

Try out the project, you should be able to move both servo motors and observe their

position on the display.

platformio.ini File

You will notice that the code also makes use of the Serial Monitor. Click the “plug” icon

on the bottom taskbar to open the serial monitor.

You probably won’t like what you see in the Serial Monitor, it’s just a bunch of random

characters. Go back into the code and you’ll see why we aren’t getting a proper display.

https://dronebotworkshop.com
40

In this code, I set the serial output to 19,200 baud, instead of 9600. But since our Serial

Monitor defaults to 9600 baud, it is not displaying the text correctly. We need to change

the speed.

We do this by editing the​ platformio.ini​ file. You’ll find this file at the bottom of every

project, in the left pane.

https://dronebotworkshop.com
41

The platformio.ini file contains the parameters for your project. It is a basic text file that

you can edit.

You’ll notice lines for the environment you are working in, the board and the framework.

There are also lines for library dependencies, in fact you can just edit this file to install

libraries and PlatformIO will install any missing ones automatically.

The platformio.ini file makes it possible to easily move your project to another computer.

We will need to edit our ​platformio.ini​ file to set the speed of the serial monitor. In the

editor add the following line to the file:

Now save the file (Ctrl-C or command-C on a Mac) and go back into the Serial Monitor.

You will notice that the text is now readable and the monitor displays the servo position.

https://dronebotworkshop.com
42

1 Monitor_speed = 19200

You can examine the ​platformio.ini​ files for our other projects if you wish to get a better

understanding of how it all works.

Conclusion

The learning curve for PlatformIO is a bit steeper than it is for the Arduino IDE, but the

effort is well worth it. PlatformIO is a more advanced code editor that will help you write

better code for a multitude of microcontrollers.

I’ll be using PlatformIO for many of my upcoming projects, and we will also revisit

PlatformIO in the near future to learn more about the advanced features of this

wonderful develop[ment environment.

Happy coding!

https://dronebotworkshop.com
43

Resources

Code for this article​ – All of the code used here and on the video in a ZIP file.

PlatformIO​ – The home page for PlatformIO.

PlatformIO Documentation​ – Complete documentation for PlatformIO.

Visual Studio Code​ – Download Visual Studio Code from Microsoft.

Visual Studio Code Documentation​ – Getting started with VS Code.

https://dronebotworkshop.com
44

http://dbot.ws/piocode
https://platformio.org/
https://docs.platformio.org/en/latest/index.html
https://code.visualstudio.com/
https://code.visualstudio.com/docs

