Git Workflow from installation to repository

Autor :Wim Cranen (wim.cranen@wccandm.nl — https://www.wccandm.nl)
Date : October 06, 2023

Status :concept

Version : 0.6

We will cover local repositories and remote repositories on GitHub, on your own local server and on
a remote server.

Inhoud

Git Workflow from installation to repository............cccocuiiiiiiiiiii i 1
INNOUM........eei ettt et s bt e e sate e sttt e s abeesabeesbbeesabeeesabeesabeesnteesabaeenanes 1
1. Whatis GIT, and WHY GIT? ..o e tee e e et e e e e eata e e s e abee e e eeareeas 2
2. InStallation Of GIT.c.oiiiiiie ettt sttt e b bt et e b e e sbe e saeesaneea 3
3. GITHNIHANIZE. ..ottt e st e st e st e e s bt e e sabeeebtessabeesabaeesanes 4
4. Your first (I0Cal) rePOSITOTY.cieiiieeiie e e e ree s te e s tee et e e s teeesareesasaeesaeesseeenns 6
5. CrEate flES. ... ettt s be e e ae e e sbee e nares 7
6. Change and track ChANEES...............ooociiiii it e et e e e ta e e e esatae e e e aaeeeeas 10
7.Create @ NeW Branch. ...t 14
8. IMErge BranChes.oooiiiiiii e e s e e e e e e e e e e e e b aeeeenaraeas 17
I o T T =] e T 1 1 o] VUSRI 21
10. The .GItIZNOIE il ... et e et e e e e ate e e e e bte e e e eataeeesntaeaeeanes 22
T2 SSH KRY ...ttt ettt e b e bt e s h e s a e et et e b e e b e e b e e ebe e ehe e et e e be e beenbeesheenareea 23
12. RemOte rePOSIEONIES.uviiiieeii et e e e e e e st e e e e e e e s abeteeeeeeeeeeannbeaeneeeeeeanas 28
13. Remote repository on GitHUD.coooiiii e 29
14. Remote repository on @ local SEIVEN.c.ooviiiiiiii it 35

15. VS Code Git Status [abels.eeeiiiiiiee e e e e e e 36

mailto:wim.cranen@wccandm.nl
https://www.wccandm.nl/

1. What is GIT, and why GIT?

Git is a version control system (vcs) originally developed for software development. But can be used
for all text based change tracking. And that is what Git does. It tracks changes, not files.

Have close look at the following website. Especially the chapter 1.2 where the mechanism is
explained and chapter 1.3 where versions, work area, staging area and repository are explained.

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

2. Installation of GIT.
Go to the GIT website and download the installer for your operating system. This example is for
Windows.

[
0 glt --everything-is-local Q Search entire site...

Git is a free and open source distributed version control system
designed to handle everything from small to very large projects with
speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast
performance. It outclasses SCM tools like Subversion, CVS, Perforce,
and ClearCase with features like cheap local branching, convenient
staging areas, and multiple workflows.

e

2 About Documentation
. Latest source Release

The advantages of Git compared Command reference pages, Pro

to other souree control systems. Git book content, videos and 2 .42. (0]
other material. Release Notes (2023-08-21)

Download for Windows
Downloads Community
‘ GUI clients and binary releases Q,D Get involved! Bug reporting,

for all major platforms. mailing list, chat, development

and more.

o

Pro Git by Scott Chacon and Ben Straub is available to read online for free. Dead 9 Windows GUIs W@ Tarballs

tree versions are available on Amazon.com.

@ Mac Build n Source Code

Start the installer. In this case the filename is: Git-2.42.0.2-64-bit.exe.
Change no options during installing, just click next until finish.

Git can be operated in the Windows power shell. Open power shell and navigate to your Documents
folder (example).

https://git-scm.com/

3. GIT initialize.

In the power shell window type the following command:
Git --version

Orjustgit
This gives a whole lot of information about git and ensures that the installation is ok.

PS C:\users\WCRAN\Documents> git

usage: git [-v | --version] [-h | --help] [-C <path>] [-c <name>=<value>]
[--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
[-p | --paginate | -P | --no-pager] [--no-replace-objects] [--bare]
[--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
[--config-env=<name>=<envvar>| <command> [<args>]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial)
clone Clone a repository into a new directory
init Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)
add Add file contents to the index
mv Move or rename a file, a directory, or a symlink
restore Restore working tree files
rm Remove files from the working tree and from the index

examine the history and state (see also: git help revisions)
bisect Use binary search to find the commit that introduced a bug
diff Show changes between commits, commit and working tree, etc
grep Print lines matching a pattern

log Show commit logs
show Show various types of objects
status Show the working tree status

grow, mark and tweak your common history
branch List, create, or delete branches
commit Record changes to the repository
merge Join two or more development histories together
rebase Reapply commits on top of another base tip
reset Reset current HEAD to the specified state
switch Switch branches
tag Create, list, delete or verify a tag object signed with GPG

collaborate (see also: git help workflows)
fetch Download objects and refs from another repository
pull Fetch from and integrate with another repository or a local branch
push Update remote refs along with associated objects

'git help -a' and 'git help -g' list available subcommands and some
concept guides. See 'git help <command>' or 'git help <concept>’

to read about a specific subcommand or concept.

See 'git help git' for an overview of the system.

PS C:\users\WCRAN\Documents:>

Then we have to initialize GIT, by giving the name and email address of the user. Insert the following
command:

git config --global user.name "Your Name"

And verify with this command if the user name is set correctly:

git config --global user.name

E¥ Windows PowerShell — O X

PS C:\users\WCRAN\Documents> git config user.name
PS C:\users\WCRAN\Documents> git config user.name

r Name
users\WCRAN\Documents>

Then you have to set your email address with:
git config --global user.email "your.name@domain.com"

And verify with this command if your email address is set correctly:

git config --global user.email
E¥ windows PowerShell — O X

S C:\users\WCRAN\Documents> git config user.email
S C:\users\WCRAN\Documents> git config user.email

our.name@domain.com
S C:\users\WCRAN\Documents>

Now your git environment is ready for operation.

With thegit config --1ist command, you can list all global variables for GIT.

PS C:\Users\WCRAN\Documents\GitRepos\Demol> git config

error: did you mean "--list® (with two dashes)?

PS C:\Users\WCRAN\Documents\GitRepos\Demol> git config
textplain.textconv=astextplain
.1fs.clean=git-1fs clean -- %f
.1fs.smudge=git-1fs smudge -- %f
.1fs.process=git-1fs filter-process
.1fs.required=true

.autocrlf=true

.fscache=true

.symlinks=false

.rebase=false
credential.helper=manager
credential.https://dev.azure.com.usehttppath=true
init.defaultbranch=master

user.name=Your Name
er.email=your.name@domain.com
alias.logl=log --graph --abbrev-commit --decorate --format=format:'%C(bold blue)%h%C(reset) - %C(bold cyan)ZaD%C(reset)

%C(bold green)(%ar)%C(reset)%C(auto)%d%C(reset)%n %C(white)%s%C(reset) %C(dim white)- %an%C(reset)’
alias.log2=log --graph --abbrev-commit --decorate --format=format:'%C(bold blue)X%h%C(reset) - %C(bold green)(%ar)%C(rese
t) %C(white)Z%s%C(reset) %C(dim white)- Zan%C(reset)%C(auto)%d%C(reset)' --all

http.sslbackend=schannel

core.repositoryformatversion-o

core,.filemode=false

core.bare=false

core.logallrefupdates=true

core.symlinks=false

core,ignorecase=true

remote.origin.url=https://github.com/wccandm/Demol.git

remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*

branch.main.remote=origin

branch.main.merge=refs/heads/main

PS C:\Users\WCRAN\Documents\GitRepos\Demol>

4. Your first (local) repository.

In the documents folder create an new folder with the name “GitRepos” change to that folder and in
the GitRepos folder create an new folder with the name “Demo1” and change into that folder with
power shell.

E¥ windows PowerShell — O X

PS C:\users\WCRAN\Documents> cd .\GitRepos)\
PS C:\users\WCRAN\Documents\GitRepos> cd .\Demol\

sers\WCRAN\Documents\GitRepos\Demol>

Enter the command: git status.

E¥ Windows PowerShell — | x
PS C:\users\WCRAN\Documents\GitRepos\Demol> git status

d not a git repository (or any of the parent directories): .git
PS C:\users\WCRAN\Documents\GitRepos\Demol>

The answer is: this is not a git repository. So we are going to create it.
Give the command: git init andthengit status again.

E¥ windows PowerShell — O X

PS C:\users\WCRAN\Documents\GitRepos\Demol> git status
not a git repository (or any of the parent directories): .git
ers\WCRAN\Documents\GitRepos\Demol> git init
Initialized empty Git repository in C:/Users/WCRAN/Documents/GitRepos/Demol/.git/
C:\users\WCRAN\Documents\GitRepos\Demol> git status
Oon branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)
PS C:\users\WCRAN\Documents\GitRepos\Demol>

Now that GIT is initialized, and we see that we are on the master branch and no commits have been
done yet and there is nothing to commit because the directory or folder is empty.

If we give the 1s command, then we see that the folder is empty... but how can we track changes
then and how does git know that there is nothing to commit? Give the 1s —h command. This
command also shows the hidden files. Now we see that there is a hidden folder called “.git”.

E¥ Windows PowerShell — O X

S C:\users\WCRAN\Documents\GitRepos\Demol> ls
S C:\users\WCRAN\Documents\GitRepos\Demol> ls

Directory: C:\users\WCRAN\Documents\GitRepos\Demol

astWriteTime Length Name

S C:\users\WCRAN\Documents\GitRepos\Demo1l>

This .git folder contains all information that git saves.
If you want to get rid of the git information, just give the command rm .git and answer with “Y”.

5. Create files.

We are going to create two files with the following commands:
ni demol.c

ni demo2.c

PS C:\users\WCRAN\Documents\GitRepos\Demol> ni demol.c

Directory: C:\users\WCRAN\Documents\GitRepos\Demol

Mode LastwWriteTime Length Name

-a---- 21-9-2023 09:49 @ demol.c

PS C:\users\WCRAN\Documents\GitRepos\Demol> ni demo2.c

Directory: C:\users\WCRAN\Documents\GitRepos\Demol

Mode LastwWriteTime Length Name

-a---- 21-9-2023 09:49 @ demo2.c

PS C:\users\WCRAN\Documents\GitRepos\Demol>

Then we give the 1s —force command. This gives all files, also the hidden ones.

PS C:\users\WCRAN\Documents\GitRepos\Demol> 1s
Directory: C:\users\WCRAN\Documents\GitRepos\Demol
Mode LastWriteTime Length Name

9 @ demol.c
21-9-2023 09:49 @ demo2.c

S C:\users\WCRAN\Documents\GitRepos\Demol>

As we can see, the .git directory (d and h Mode) and two files are present (archive mode).
Then we want to know the status of git. Give the command git status.

E¥ Windows PowerShell — O X

PS C:\users\WCRAN\Documents\GitRepos\Demol> git status
on branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)
PS C:\users\WCRAN\Documents\GitRepos\Demol>

We are still on the master branch, there are still no commits and we have two untracked files.
Remember we are in the working directory. To have git trace the changes of these files the have to
be moved to the staging area. If the files are in the staging area, we can do a commit to bring the
files in the repository. Let’s go.

Working Staging .git directory
Directory Area (Repository)

Checkout the project

By adding the files, we bring the files in the staging area. We can add files with the following
commands:

git add filename (this adds only the specific filename)

git add directory (this adds only the specific directory)

git add . (this adds everything)

We are going to add everythingand doagit status after that.

>

S C:\users\WCRAN\Documents\GitRepos\Demol> git add .
S C:\users\WCRAN\Documents\GitRepos\Demol> git status
On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

S C:\users\WCRAN\Documents\GitRepos\Demol>

The we see that we are still on the master branch, no commits done, but there are changes that can
be committed. The two files are tracked and are in the staging area.

Now we can do a commit with the following command:

git commit -m “message” and ask for the status and a log.

We give the command: git commit -m "v0.0 - Initial commit"

This commits the files to the repository with the message (-m): v0.0 — Initial Commit.

Then:git status

That gives us the information that we are on the master branch and that there is nothing to commit.
Then:git log

Gives us the information about the author, the date and the commit message.

Please be as specific as possible with this message, which can go over several lines.

Also see that this commit has got a code or a hash, in this case:
afl2b458e50£0200938¢c3f3ed9225bdd017db248

Then there is information about HEAD -> master, where HEAD refers to the current branch.

¥ Windows PowerShell — O X

PS C:\users\WCRAN\Documents\GitRepos\Demol> git commit
[master (root-commit) af12b45] ve.® - Initial commit

2 files changed, @ insertions(+), @ deletions(-)
create mode 100644 demol.c

create mode 1@0644 demo2.c

PS C:\users\WCRAN\Documents\GitRepos\Demol> git status
on branch master

nothing to commit, working tree clean

PS C:\users\WCRAN\Documents\GitRepos\Demol> git log
commit af12b458e50f0200938c3f3ed9225bdde17db248 (HEAD -> n
Author: Your Mame <your.name@domain.com>

Date: Thu Sep 21 14:37 2023 +0200

ve.@ - Initial commit
PS C:\users\WCRAN\Documents\GitRepos\Demol>

All ready for now, the repository is clean and ready.

6. Change and track changes.
Now we are going to make changes in one of the files. Open your “Demo1” directory in the windows

explorer and with a right mouse click start Notepad or Notepad++ with the “Demo1.c” file.
Add the following information to it and save and close the file.

| demol.c E3

)i
}
id l-:-:z:-—{_} {
digitalWrite (LED BUILTIN, HIGH): turn ti E
delay()i wait

digitalWrite (LED BUILTIN, LOW): 1irn th
delay() wait for

The text can be copied from here.
Thenwedoals -forceandagit status.

[>)

S C:\users\WCRAN\Documents\GitRepos\Demol> 1s
Directory: C:\users\WCRAN\Documents\GitRepos\Demol
LastWriteTime Length Name

1275 demol.c
@ demo2.c

CRAN\Documents\GitRepos\Demol> git status
pn branch ter
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

no changes added to commit (use "git add" and/or "git commit -a")
S C:\users\WCRAN\Documents\GitRepos\Demo1>

https://create.arduino.cc/example/builtin/01.Basics%5CBlink/Blink/preview

We see that the file “Demol.c” has got some content (1275 bytes), we see that we are still in the
master branch, there are changes but they are not staged and nothing to commit. So we are going to

stage the Demol.c file.
git add demol.c
git status

git commit -m “vO0.l1 - Demol.c changed with Arduino blink sketch”
git status

git log

E¥ windows PowerShell - | x

PS C:\users\WCRAN\Documents\GitRepos\Demol> git add demol.c
PS C:\users\WCRAN\Documents\GitRepos\Demol> git status
On branch master
Changes to be committed:
(use "git restore --staged <file>..." to unstage)

PS C:\users\WCRAN\Documents\GitRepos\Demol> git commit

[master 2147b2c] v@.1 - Demol.c changed with Arduino blink sketch
1 file changed, 37 insertions(+)

PS C:\users\WCRAN\Documents\GitRepos\Demol> git status

On branch master

nothing to commit, working tree clean

PS C:\users\WCRAN\Documents\GitRepos\Demol> git log

commit 2147b2cb7e7ccd88sfcfebebedlasd206fc8e3fco (HEAD -> ma

Author: Your Name <your.name@domain.com>

Date: Thu Sep 21 1@ 157 2023 +0200

v0.1 - Demol.c changed with Arduino blink sketch
commit c75991efcce3756f@160dc808cf1bae982bsebds
Author: Your Name <your.name@domain.com>
Date: Thu Sep 21 1@:52:14 20823 +0200
Revert "v@.1 - Demol.c changed with Aduino blink sketch™
This reverts commit ed248b6d592@a67dadd53c5@1baed68a79f58963.
commit ed248b6d5920a67dadd53c501bae468a7958963
Author: Your Name <your.name@domain.com>
Date: Thu Sep 21 1@:45:18 2023 +0200
v@.1 - Demol.c changed with Aduino blink sketch
commit af12ba58e50f@200938c313ed9225bdde17db24as
Author: Your Name <your.name@domain.com>

Date: Thu Sep 21 1@:14:37 2023 +02e0

ve.® - Initial commit
PS C:\users\WCRAN\Documents\GitRepos\Demol>

If you made a mistake in the commit, you can revert the commit with:

git revert <commit hash> --no-edit This will also revert your changes.

if you only want to undo the last commit, give:

git reset —--soft HEAD~1 This will undo the commit but leaves your changes intact.
in the log, you can see that | made a revert, nothing keeps unseen, everything is tracked.

Now we are going to make a slight change in Demol.c. Add the following:

https://www.arduino.cc/en/Tutorial /BulltInExamples/Blink

See the yellow line.
Thenwedoals -forceandagit status.

EX¥ Windows PowerShell — | X
PS C:\users\WCRAN\Documents\GitRepos\Demol> ls

Directory: C:\users\WCRAN\Documents\GitRepos\Demol

LastWriteTime Length Name

1299 demol.c
@ demo2.c

PS C:\users\WCRAN\Documents\GitRepos\Demol> git status
Oon branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

no changes added to commit (use "git add" and/or "git commit -a")
PS C:\users\WCRAN\Documents\GitRepos\Demol>

We see that the file “Demol.c” has got more content (1299 bytes), we see that we are still in the
master branch, there are changes but they are not staged and nothing to commit. So we are going to
stage the Demol.c file again.

git add demol.c

git status

git commit -m “v0.2 - Demol.c added #include <Arduino.h>"

git status

git log

\users\WCRAN\Documents\GitRepos\Demol> git add demol.c
\WCRAN\Documents\GitRepos\Demol> git status
On branch master
hanges to be committed:
(use "git restore --staged <file>...

to unstage)

S C:\users\WCRAN\Documents\GitRepos\Demol> git commit
[master a76b4bc] v@.2 — Demol.c added #include <Arduino.h>
1 file changed, 2 insertions(+)

S C:\users\WCRAN\Documents\GitRepos\Demol> git status

On branch master

nothing to commit, working tree clean

S C:\users\WCRAN\Documents\GitRepos\Demol> git log

commit a76b4bce91d7198855fcadd96e2958250b3aal14 (HEA
Author: Your Name <your.name@domain.com>
Thu Sep 21 11:12:46 2023 10200

©.2 - Demol.c added #include <Arduino.h>

2147b2cbh7e7ccdsgsfcfebebed1ad206fc8e3fco
¢ Your Name <your.name@domain.com>
Thu Sep 21 10:58:57 2023 +8200

@.1 — Demol.c changed with Arduino blink sketch
c75991efcce3756f0160dc8e8ct1bae982bgebds

: Your Name <your.name@domain.com>
Thu Sep 21 10:52:14 2023 +8200

You can see that the log is growing and changes are nicely tracked.

A nicer log can be called by:

git log —--graph --abbrev-commit --decorate --format=format:'%C (bold

blue) $h%C (reset) - %C(bold cyan) %$aD%C (reset) %C(bold

green) (%ar) $C(reset) %C (auto) $d%C (reset) sn'"' $C (white) $s%C (reset)
$C (dim white)- %an%C (reset)'

Or:

git log --graph --abbrev-commit --decorate --format=format:'SsC (bold
blue) $h%C (reset) - %C(bold green) (%ar) %C (reset) %C(white) %s%C (reset)
%C(dim white) - %an%C(reset) %C (auto) $d%C (reset) ' --all

These can be kept in aliases.

git config --global alias.logl "log --graph --abbrev-commit --
decorate --format=format:'%C (bold blue) $h%C (reset) - %C(bold
cyan) 3aD%C (reset) 3%C(bold

green) (%ar) 3C (reset) 3C (auto) 3dsC (reset) sn'"'

%C (white) $s%C (reset) %C(dim white)- %an%C (reset)'""

Or:

git config --global alias.log2 "log --graph --abbrev-commit --
decorate --format=format:'%C (bold blue) $h%C (reset) - $C(bold
green) (%$ar) %C (reset) %C(white) $s%C (reset) %C(dim white) -

%an%C (reset) %C (auto) $d%C (reset) ' —--all"

The you can give the commands:
git logl

Or

git log2

And that gives the following results:

E¥ windows PowerShell - O *

v0.1 — Demol.c changed with 2 - Your Name
Thu, 21 D 357
sketch™ - Your Name

Your Name

S C:\users Documents\GitRepos\Demol> git log2
T) .2 - Demol.c d #include duino.h> - Your Name (HEAD -> master)

: o - Your Name
.1 - Demol.c change d K - Name
- a v - Initial commit - Your Name
S C:\users\WCRAN\Documents\GitRepos\Demol>

7. Create a new branch.

Lets make a new branch to test a new feature. The existing branch stays intact. Issue the following
commands:

We see that we switched to featerl branch

We are on featurel nothing to commit.
We are going to make changes lines 26/27, 38 and 40.

i B/

2 Blink

3

4 Turns an LED on for one second, then off for one second, repeatedly.

5

[Most Arduinos have an on-board LED you can control. COn the UNO, MEGA and ZERO
7 it is attached to digital pin 13, on MKR1000 on pin &. LED BUILTIN is set to
8 the correct LED pin independent of which board is used.

9 If you want to know what pin the on-board LED is connected to on your Arduino
10 model, check the Technical Specs of your board at:

11 https: //www.arduino.cc/en/Main/Products

12

13 modified 8 May 2014

14 by Scott Fitzgerald

15 modified 2 Sep 2016

16 by Arturc Guadalupi

17 modified 8 Sep 2016

18 by Colby Newman

19
20 Thia example code ia in the public domain.
21
22 https://www.arduino.cc/en/Tutorial /BuiltInExamples/Blink
23 =*f
24
25 finclude <Arduino.h>
26
27 int iBlinkSpeed = | H // the blink speed in milli seconds
28
29 // the setup function runa once when you presas reset or power the board

30 vold setup() {

31 // initialize digital pin LED _BUILTIN as an output.

32 pinMode (LED BUILTIN, OQUTPEUT) ;

33 }

34

35 // the loop function runs over and owver again forever

36 void loop() {

37 digitalWrite (LED_BUILTIN, HIGH); // turn the LED on (HIGH is the wvoltage level)
38 | delay(iBlinkSpeed) ; // wait for a second

39 digitalWrite (LED BUILTIN, LOW): /f turn the LED off by making the wvoltage LOW
40 I delay[iBlinkSpeed); // wait for a second

41 1

Then we do a 15/ =force and a git status.

The file demol.c has changed again and now counts 1388 bytes.
We are now on the feature branch, the file demol.cis not staged, nothing to commit.

We are going to add demol.c to the staging area.

PS C:\users\WCRAN\Documents\GitRepos\Demo1l> ls

Directory: C:\users\WCRAN\Documents\GitRepos\Demol

LastWriteTime Length Name

21-9-2023
21-9-2023 11 1388 demol.c
21-9-2023 09 : 0 demo2.c

:\users\WCRAN\Documents\GitRepos\Demo1l> git status
on branch featureil
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

no changes added to commit (use "git add" and/or "git commit -a")
PS C:\users\WCRAN\Documents\GitRepos\Demol>

git add demol.c

glt status

git commit -m “v0.2 - Demol.c added #include <Arduino.h>”
git status

git log

PS C:\users\WCRAN\Documents\GitRepos\Demol> git add demol.c
PS C:\users\WCRAN\Documents\GitRepos\Demol> git status
n branch featureil
“hanges to be committed:
(use "git restore --staged <file>...

to unstage)

PS C:\users\WCRAN\Documents\GitRepos\Demol> git commit
[feature1l 625f1ff] v@.5 - Featurel - blinkspeed as a variable
1 file changed, 4 insertions(+), 2 deletions(-)
PS C:\users\WCRAN\Documents\GitRepos\Demol> git status
Oon branch featurei
nothing to commit, working tree clean
PS C:\users\WCRAN\Documents\GitRepos\Demol> git log
625f1ff53a17a4dcedea6cdc65ebdeibbifcefff (HEAD ->
! Your Name <your.name@domain.com>
Thu Sep 21 12:93:28 2023 +0200

®.5 - Featurel - blinkspeed as a variable

a76b4bc@91d7198055fcadd96e295825@b3aall4 (mas
¢ Your Name <your.name@demain.com>
Thu Sep 21 :12:46 2023 +0200

8.2 - Demol.c added #include <Arduino.h>
2147b2cb7e7ccd888fcf6bebedlad206fc8e3fco
: Your Name <your.name@domain.com>

Thu Sep 21 57 2023 10200

8.1 — Demol.c changed with Arduino blink sketch

We can see that we are on the featurel branch (HEAD is pointing to this).
Letsdoagit log —--graph.

To see a graphical overview of the branches.

PS C:\users\WCRAN\Documents\GitRepos\Demol> git log

* commit 625f1ff53al7addcedee6cdc65ebd@ibbifcefff (HEAD -> featurel)
Author: Your Name <your.name@domain.com>
Date: Thu Sep 21 12:083:28 2023 +0200

v@.5 - Featurel - blinkspeed as a variable

* commit a76b4bce91d7198055fcadd96e2958250b3aalla (m
Author: Your Name <your.name@domain.com>
Date: Thu Sep 21 11:12:46 2023 +0200

ve.2 - Demol.c added #include <Arduino.h>
* commit 2147b2cb7e7ccd8ssfcfebbbedlas2e6fc8e3fco
Author: Your Name <your.name@domain.com>
Date: Thu Sep 21 1@:58:57 2023 +8200
v@.1 - Demol.c changed with Arduino blink sketch
* commit c75991efcce3756f016@dc8es8cf1bae982bgabds
Author: Your Name <your.name@domain.com>
Date: Thu Sep 21 1@:52:14 2023 +0200
Revert "ve.1 — Demol.c changed with Aduine blink sketch”
This reverts commit ed248b6d5920a67dadd53c501bae468a79f58963.
* commit ed248be6d5920a67dadd53c501baed68a79f58963
Author: Your Name <your.name@domain.com>
Date: Thu Sep 21 10:45:18 2023 +0200
ve.1 - Demol.c changed with Aduino blink sketch
* commit af12b458e50f8200938c3f3ed9225bddo17db248
Author: Your Name <your.name@domain.com>

Date: Thu Sep 21 1@:14:37 2023 +9200

ve.@ - Initial commit
PS C:\users\WCRAN\Documents\GitRepos\Demo1>

Go back to the master branch.

git checkout master

Open the demol.c file and see that the changes in lines 26/27, 38 and 40 are gone.
Now make some changes, change 1000 by 500 to make it faster.

Stage the demol.c file and commit the change. Then perform a git log2.

EN windows PowerShell — O X
\Demol> git log2
ade blink faster - Your Name (HEAD -> m
- Featurel - blinkspeed as a v able - Y

blink sketch - Your Name

uino blink ske - Your Name
uino blink sketch - Your Name
- (2 hours & i Your Name
PS C:\users\WCRAN\Documents\GitRepos\Demol>

Now you can see the branch featurel going away from the master branch.
HEAD is pointing to master again.

8. Merge branches.
Before we going to merge the branches, we want to show the differences from master to featurel
branch. Issue the following command:

git diff master..featurel

EX Windows PowerShell - O X

\WCRAN\Documents\GitRepos\Demol> git diff master featurel
demol.c b/demol.c
index deffsgb..e315781 10644
--- afdemol.c
+++ b/demol.c

#include <Arduino.h>

// the setup function runs once when you press reset or power the board
void setup() {

// initialize digital pin LED BUILTIN as an output.
void setup() {
// the loop function runs over and over again forever
void loop() {
digitalWwrite(LED BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW

1
¥

\ No newline at end of file

PS C:\Users\WCRAN\Documents\GitRepos\Demo1l>

This gives us an overview of the changes. Merging these branches will give us some merge conflicts.

E¥ Windows PowerShell - | X

PS C:\Users\WCRAN\Documents\GitRepos\Demo1l> git branch
featurel
*

PS C:\Users\WCRAN\Documents\GitRepos\Demo1>

We see that there are two branches and master is the current branch.

Be sure to be on the master branch (git status orgit branch) and issue the following
command:

git merge featurel

PS C:\Users\WCRAN\Documents\GitRepos\Demol> git status

Oon branch ter

nothing to commit, working tree clean

PS C:\Users\WCRAN\Documents\GitRepos\Demol> git merge featurel

Auto-merging demol.c

CONFLICT (content): Merge conflict in demol.c

Automatic merge failed; fix conflicts and then commit the result.
PS C:\Users\WCRAN\Documents\GitRepos\Demol>

We see that an automatic merge failed and we have to fix the conflicts.

Now the git diff command can help us.

PS C:\Users\WCRAN\Documents\GitRepos\Demol> git diff
diff --cc demol.c

index deffssh,e315781..0000000

--- afdemol.c

+++ b/demol.c

void setup()
// the loop function runs over and over again forever
void loop() {
digitalWwrite(LED BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

}
PS C:\Users\WCRAN\Documents\GitRepos\Demol>

This shows us that in the master branch the delay has a number and in the feature branch the delay
has a variable.

Let us open the demol.c file in the master and fix the problem:

=] demotc B3

int iBlinkSpeed = H link speed in milli
id setup() {
pinMode (LED_BUILTIN, ©

}

void loop() {
| digitalWrite (LED_BUILTIN, HIGH); turn the LEL n (HIGH is the woltag
| <<<<<<< HEAD
| delay({iBlinkSpeed):

digi:alWri:e(LED_BJILTIH, LOW) ; turn the LEL It by t 3 s W
delay(): wait for a second

delay(iBlinkSpeed) ; // wait for a second
digitalWrite (LED BUILTIN, LOW); turn the [ff by o ir
delay(iBlinkSpeed) ;

| >>»>»>»>> featurel

L}

This would be ok:

E demolc B3 |

1 =IE

2 Blink

3

4 Turns an LED on for one second, then off for one second, repeatedly.

5

6 Most Arduinos have an on-board LED you can control. On the UNO, MEGA and ZERO
7 it is attached to digital pin 13, on MER1000 on pin 6. LED_BUILTIN is set to
8 the correct LED pin independent of which board ia uaed.

9 If you want to know what pin the on-board LED is connected to on your Arduino
10 model, check the Technical Specs of your board at:
11 https://www.arduino.cc/en/Main/Products
12
13 modified 8 May 2014
14 by Scott Fitzgerald
15 modified 2 Sep 2016
16 by Arturo Guadalupi
17 modified B Sep 2016
18 by Colby Newman
19
20 Thia example code ia in the public domain.
21
22 https://www.arduino.cc/en/Tutorial /BuiltInExamples/Blink
23 L+
24
25 ¢include <Arduino.h>
26
27 int iBlinkSpeed = 1000; // the blink speed in milli seconds
28
29 /f the setup function runs once when you press reset or power the board

30 [Fvoid setup() {

31 // initialize digital pin LED BUILTIN as an output.
=¥ pinMode (LED _BUILTIN, OUTPBUT):

33 =}

34
35 // the loop function runs over and over again forever

36 Hvoid loop() {

37 digitalWrite (LED_BUILTIN, HIGH); // turn the LED on (HIGH is the woltage level)
38 | delay(iBlinkSpeed) ; // wait for a second

39 digitalWrite (LED BUILTIN, LOW): // turn the LED off by making the voltage LOW
40 delay(iBlinkSpeed) ; 4! wait for a second
41
42 -}

Now lets us stage the demol.c file, commit it, look at the status and perform a log2.
The result is here below.
We can see that the featurel branch is closed and merged into the master branch.

Also HEAD is pointing to the master branch again.

Users\WCRAN\Documents\GitRepos\Demol> git status
On branch master
You have unmerged paths.
(fix conflicts and run "git commit™)
(use "git merge --abort"™ to abort the merge)

Unmerged paths:
(use "git add <file>..." to mark resolution)

no changes added to commit (use "git add" and/or "git commit -a™)
Users\WCRAN\Documents\GitRepos\Demo1l> git add demol.c
\Users\WCRAN\Documents\GitRepos\Demol> git status
on branch master
All conflicts fixed but you are still merging.
(use "git commit™ to conclude merge)

Changes to be committed:

Users\WCRAN\Documents\GitRepos\Demol> git commit
[master Seff794] vi.e - Featurel merged
PS C:\Users\WCRAN\Documents\GitRepos\Demol> git status
on branch master
nothing to commit, working tree clean
Users\WCRAN\Documents\GitRepos\Demo1> git log2
1.0 - Featurel merged - Your Name (HEAD -> r)

able - Your Name (

dui Name
ino blink sketch - Your Name
Demol. a d with i link Your Name
v@.1 — Demol.c changed wi i i 5 C £ Name
(3 hours : Initial commit - Your Name
\Users\WCRAN\Documents\GitRepos\Demol>

9. Fork a repository.

10. The .gitignore file.
GIT has a file with a special purpose. This file is called .gitignore with no extensions.

The purpose of .gitignore files is to ensure that certain files not tracked by Git remain untracked.
To stop tracking a file that is currently tracked, use git rm --cached to remove the file from the index.
The filename can then be added to the .gitignore file to stop the file from being reintroduced in later

commits.

Git does not follow symbolic links when accessing a .gitignore file in the working tree. This keeps
behavior consistent when the file is accessed from the index or a tree versus from the filesystem.

Why? Think of Wi-Fi or other credentials, but also other files that we do not want to be tracked.

11. SSH key.

Open PowerShell (PS) as an administrator and issue the following commands:
Ifno .ssh/id rsa folder exists.

> cd c:\users\username

> mkdir .ssh

> cd .ssh

> mkdir id rsh

EN Administrator: Windows PowerShell - O >
PS C:\> cd c: user

Directory:

Directory:

If the folders .ssh and id_rsa exists continue with:

> ssh-keygen -t rsa -b 4096 -C “your.email@domain.com”
The email address to be used is the email address that you use to login to GitHub.
Enter the location: c: \users\username\.ssh\id rsa\testkeyl

Enter password: ... (if any).

Wait for the message: key generated successfully.

EX Administrator: Windows PowerShell - O b4

Open the folder you used to store the file in (location her above).
And you will find two files:

testkeyl (your private key)

testkeyl .pub (your public key)

mailto:your.email@domain.com

Open testkeyl.pub in notepad and switch word wrap on.
You can see that the content of the file starts with “ssh-rsa” and ends with your.email@domain.com

) testkeyl.pub - Notepad — O *
File Edit Format View Help

ksh—rsa ALAAB3NzaClyc2E AQABAAACAQCj+a@peFIYwgobmdGwlEkE

+alohnoRfz7C13GHUDHs8VzEdOxPEXABMe LWgKFKEMT13rPet8TrnNZGaxrwdG,/RQFu8+DzDxwlxsql2FAT1P
+8BmPalNalkBGGIeoNt7X5y@1ir5oPgKlrWC8m+SK30Fmva67glyZQdtVQab3 /z8E9p28xVUARSYeCrcY]
+T6fCgQd7B1PZ4wbwo05955LdZcsK/W1iNe5ztRP+HHaP7PjxNMiZRwILgeoZapHiginT
+870cEvoqMIWzdzXt1c0sXqWKaE3zHKdHFdVRIgVzZUKBbelndeAbpBDyCjmAz TTE9obNKabmMIde0Gx88 LNgV by cUP7RtvUAXyywutTZphelb
+xz8h9ymPtxNZCes@DEMmIy5jKITXL2xULASaIrzjbBy jWbhS rIM3QY
+GGbbuSKGkvRq/04X2p7vmuP5TSvHNFWQsQejzCmcdbplZ5fAsksvMif ibUynveSRBAAOXBAY ZeSwtnLMKE6F3T
+KFBRHgX41wUucojHrerCbpKSQboROtYaHpldTWLBgbcdzHABCRKI sktQmudYiBIvkFiBYMpIVutgIXbElfjgu7YMk7apI1A7WrPymuFVuyXYRKIm,/Lm
8/W2zvLr5yw9/mogsba+ooh5RySR+DEPGQLWTOUGIcoyVWCIATItSPALgUw== your.email@domain.com

Copy this content to the clipboard.
Login to GitHub.
Go to your logo in the upper right corner of the opening screen.

M o2 @ » All Bookmarks

CC\ ku;carldm »
") Wim Cranen

O Set status

pe]

Your profile

i

Your repositories

Your projects

8 3

Your organizations
Your enterprises
Your stars

Your sponsors

B Q=% &

Your gists

Upgrade
Try Enterprise
Copilot

Feature preview

Settings

B |@&|0 @ & b

GitHub Docs

®

GitHub Support

Sign out

mailto:your.email@domain.com

In the new window go to “SSH and GPG keys” in the left.

CC\, Your personal account

| A Ppublic profile Public profile

83 Account

& Appearance Name

B

Your name may appear around GitHub where you contribute or are mentioned. You can remove it at any time.

f Accessibility

[\ Notifications

Public email
Access Select a verified email to display +
B3 Billing and plans e You can manage verified email addresses in your email settings
E2 Emails

Bio
(@) Password and authentication

Love to code for Arduino, Raspberry Pl, PLC's CNC's, websites and
(i) Sessions 50 on.

22 S5H and GPG keys %

You can @mention other users and organizations to link to them.

Organizations

Pronouns
@ Enterprises
Don't specify =
[Moderation ~
URL

Code, planning, and automation
http://www.wccandm.nl

[Repositories

Social accounts
8O Codespaces

@ | Linkto social profile

&) Packages

8 Copilat @ | Linkto social profile
[Pages ¢@ | Linkto social profile
€ Saved replies @ | Linkto social profile
[Companv

Here you can see your SSH keys, if any exists. Click “New Key”

SSH keys

There are no 55H keys associated with your account.

Check out our guide to generating SSH keys or troubleshoot common S5H problems,

GPG keys

There are no GPG keys associated with your account,

Learn how to generate a GPG key and add it to your account.

Vigilant mode

[l Flag unsigned commits as unverified
This will include any commit attributed to your account but not signed with your GPG or S/MIME key.
Note that this will include your existing unsigned commits,

Learn about vigilant mode.

Under title, give it an name (testkeyl) and paste the content of your public key in the “key” windows.
Remove the last space.

Add new SSH Key

Title

tastkey1

Key type

Authentication Key +

Key

ssh-rsa
AAAABINzaC1yc2EAAAADACABAAACAQC +a0peF)YwgobmdGwl6kE+aNBhneRfz7C13GHUDHs8VZEdOxPEXAOMeLWoKFKEMTI3rPetOTrnNZGaxrW
v5G/RQFUS+DzDxwCxsg) 2FAIIP+0BmPaNaWKB GGl eoNtTX5y0lr5oPgKIrWCem+5K30Fmv467glyZQdtVQab3/z8E9p20xVIUARS YeCreY)+ T6fCgQd7
BIPZdwowoo5955Ld7csK/\WINe5ztRP+HHaP7PixNMiZRwiLgeoZapHWginT+070cEvogMIWzdzXt1cOsXgWKaE3zHKdHFAVRIgVzZ UKObelndeAdp0
DyCjmAzTTE9obNKabmMIdeOGx88LNgVjbycUPTRIVUAXyywutTZpheMNb+xz8h9ymPtxNZCes0DEMmIy S K7 TXLZxUIAIalrzjbByWBhSHIM3QY + GG
bbuSKGkvRg/O4X2p7vmwP5TSvHNfWQsQejzCmcdbplZ5f4sWsyMW ibUynve SREAAOxBAYZeSwinLMKGf3T+KFBRHgX4 TwUucojHrOrCbpKSQboROt
YaHpldTWLBgbcdzH4BCRKIsktQmudYiBJvkFjBYMpJVutgIXbEIfjgu7yMk7apll ATWrPvmuFYuyXYRKIm/LmO/W2zvLrsyw9/mogsba +oohSRysR+DEPG
gLWTOUGYcEyWwWCZAI315PALgUw== your.email@domain.com

Add SSH key

Click the “Add SSH key” button (you are required to enter your password and confirm). Done!!.

SSH keys

This is a list of 5SH keys associated with your account. Remove any keys that you do not recognize.

Authentication Keys

testkeyl
p SHA256: s\VAC %K1Eg3kD3cSmFXdLvXQBHWnCaw JwvnRing

Ad on Oct

Delete

Check out our guide to generating 55H keys or troubleshoot common 55H problems,

If you want to know more about the SSH keys, click the instruction to check out the guides.

Now you have to make sure that the local GIT knows about your private key. Thes keys match
together and the pair is the mathematical prove that it is generated with the public key information.

Start the SSH-agent in the background (if you use Windows, do this in GIT bash).

MIMNGWES: ¢/ Users/username/ ssh/id_rsa — O >

ur. emal

GIT bash needs forward slashes!!

See also https://www.youtube.com/watch?v=RGOj5yH7evk&t=1230

https://www.youtube.com/watch?v=RGOj5yH7evk&t=1230

12. Remote repositories.

Why would we want to have a remote repository?

1. To make it possible for a team to work on a project.

2. To have backups. Push regularly (at least every change) to the remote repository and pull the
changes from your teammates.

This makes sure you are working with a clean project and maybe overcome merge conflicts.

Where do we want to create a remote repository?
There is more than one solution:

1. On GitHub.
2. Onalocal server.
3. Onaremote server

13. Remote repository on GitHub.
Open your GitHub account or create on if there is no account.

Create a new repository with the same name as your local repository.

=) vecaim / vemars Q Type Pto search ~ | +- 0 n 8@

<> Code (lIssues 11 Pullrequests (Actions [Projects (@ Security | Insights @ Settings Q@ New repository

3 import repository

@ Demotl Frisie OUnwstech 1+ ¥ Fork > Y s o0
8 New codespace
e} R

Set up GitHub Copilot Add collaborators to this repository

Goto the “+” sign and click “New Repository”.

Create a new repository
A repository contains all project files, including the revision history. Already have a project repository elsewhere?

Import a repository.
Required fields are marked with an asterisk (*).

Owner * Repository name *

@ wccandm -~ f Demaol

@ Demol is available.

Great repository names are short and memorable. Meed inspiration? How about vigilant-octo-bassoon ?

Description (optional)

| Demo to describe Git workﬂoﬂ]

Public

Anyone on the internet can see this repasitory. You choose who can commit.

o

Private
O

‘You choose who can see and commit to this repository.

Initialize this repository with:
(] Add a README file

This is where you can write a long description for your project. Learn more about READMEs,

Add .gitignore
.gitignore template: None -

Choose which files not to track from a list of templates. Learn more about ignoring files

Choaose a license
License: None -

A license tells others what they can and can't do with your code. Learn more about licenses.

(@) You are creating a public repository in your personal account.

And click “Create Repository”.
If we issue the following sequence:

git remote add origin https://github.com/wccandm/Demol.git
git branch -M main
git push -u origin main

We get an error:

E¥ Windows PowerShell —] X

PS C:\Users\WCRAN\Documents\GitRepos\Demol> git push origin main
fatal: unable to access 'https://github.com/wccandm/Demol.git/": SSL certificate problem: unable to get local issuer cer

tificate

We have an issue with the SSL certificate. Issue the following command and try again:
git config --global http.sslbackend schannel

You have to authenticate in your browser. Do this and...

@ Demol Public 57 Pin & Unwatch 1
¥ main ~ ¥ 1branch 0tags Go to file Add file = <> Code ~
Your Name v1.0 - Feature1 merged seff794 1 hourago {%) 8 commits
[demeilc v1.0 - Feature1 merged 1 hour ago
[demo2c v0.0 - Initial commit 4 hours ago
Help people interested in this repository understand your project by adding a README. Add a README

Your repository exists on GitHub.
Let us create the README.md file in GitHub and pull the project to the local repository.

While the remote repository is known, we just have to issue this command:

git pull

PS C:\Users\WCRAN\Documents\GitRepos\Demol> git pull

remote: Enumerating objects: 4, done.

remote: Counting objects: 1ee% (4/4), done.

remote: Compressing objects: 1ee% (3/3), done.

remote: Total 3 (delta @), reused @ (delta @), pack-reused @
Unpacking objects: 1ee% (3/3), 756 bytes | 94.@e KiB/s, done.

From https://github.com/wccandm/Demol
5eff794..eb2e815 main -> origin/main

Updating Seff794..eb2e815

Fast-forward

README.md | &

1 file changed, 6 insertions(+)

create mode 100644 README.md
PS C:\Users\WCRAN\Documents\GitRepos\Demo1>

Performgit log2 command:

You can see that a README.md file was created on the origin/main (=GitHub).
While the README.md file is in our local repository a pull must have been performed.

https://github.com/wccandm/Demo1.git

\GitRepos\Demo1> git log2
Created README.md file - Wim Cranen (H -> main,
/1.0 - Featurel merged - Your Name

- Featurel - blinkspeed as a variable - Your Name (f
de blink faster - Your Name

h> - Your Name

link sketch - Your Name
r Name

PS C:\Users\WCRAN\Documents\GitRepos\Demol>

Now let is change demol.c in our local repository, change the blinking speed to 500.
Stage and commit the file.

Users\WCRAN\Documents\GitRepos\Demol> git status
anch main
Your branch is up to date with 'origin/main’.

Changes not staged for commit:
(use "git add <file>..."™ to update what will be committed)
(use "git restore «file»..." to discard changes in working directory)

no changes added to commit (use "git add" and/or "git commit -a")
1 \Users\WCRAN\Documents\GitRepos\Demol> git add demol.c
rs\WCRAN\Documents\GitRepos\Demo1l> git status
anch main
Your branch is up to date with 'origin/main’.

Changes to be committed:
(use "git restore staged <file>..." to unstage)

PS C:\Users\WCRAN\Documents\GitRepos\Demo1l> git commit
[main 96172@e] vi.e1 - Changed blink speed to 5@@ ms
1 file changed, 1 insertion(+), 1 deletion(-)
sers\WCRAN\Documents\GitRepos\Demol> git status
On branch main
Your branch is ahead of 'origin/main' by 1 commit.
(use "git push" to publish your local commits)

nothing to commit, working tree clean
PS C:\Users\WCRAN\Documents\GitRepos\Demo1>

See that the master branch name changed to main.
Performagit log2.

git log2
blink speed to 5i
reated README.md file - Wim Cranen (
@ - Featurel merged - Your Name

Featurel - blinkspeed as a variable - Your Name (f
3 - Made blink faster - Your Name

h> - Your Name

C lin ‘our Name
Demol.c changed with Aduino blink sketch™ - Your Name
anged with uino blink sketch - Your Name
r Name

Let us open the demol.c file on GitHub.

=]
]
=
o
[al
[
o]
=
5]

| Code | Blame 42 lines £9 Code 55% faster with GitHub Copilot

2 Blink

3

4 Turns an LED on for one second, then off for one second, repeatedly.

6 Most Arduinos have an on-board LED you can control. On the UNO, d ZERD
7 it is attached to digital pin 13, on MKR1@8@ on pin &. LED BUILTIN is set to
8 the correct LED pin independent of which board is used.

9 If you want to know what pin the on-board LED is connected to on your Arduino

1@ nodel, check the Technical

Specs of your board at:

.arduino.ccfen/Main/Products

ymple code is in the public domain.

.ccfen/Tutorial/BuiltInExamples/Blink

5 #include <Arduinc.h>

=]
&

27 int iBlinkSpeed = 128@; /f the blink speed in milli seconds

©a

P
[V
m

the setup function runs once when you press reset or power the board

)
=]

void setup() {

1 {f initialize digital pin LED_BUILTIN &s an output.

pinMode{LED_BUILTIN, OUTPUT);

wow
L =) M3
—

! the loop function rums over and over again forever
loop() {

37 digitalWrite(LED_BUILTIN, HIGH);
38 delay(iBlinkSpeed);

39 digitalkrite(LED_BUILTIN, LOW);
48 delay(iBlinkSpeed);

~: \Users\WCRAN\Documents\GitRepos\Demo1> git push
Enumerating objects: 5, done.
Counting objects: 1ee% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 1ee% (3/3), done.

Writing objects: 100% (3/3), 358 bytes | 358.@0 KiB/s, done.
Frotal 3 (delta 1), reused @ (delta @), pack-reused @
remote: Resolving delt 1ee% (1/1), completed with 1 local object.
To https://github.com/ andm/Demol.git
eb2e815..961720e main -> main

Then push the local repository to GitHub and again open the demol.c file on GitHub.

Demol / demol.c

‘ Code | Blame 42 lines (32 loc) - 1.3 KB &) Code 55% faster with GitHub Copilot

3
4 Turns an LED on for one second, then off for one second, repeatedly.
5
6 Most Arduinos have an on-board LED you can control. On the UNO, MEGA and ZEROD
7 it is attached to digital pin 13, on MKR1888 on pin 6. LED_BUILTIN is set to
8 the correct LED pin independent of which board is used.
9 If you want to know what pin the on-board LED is conmected to on your Arduino
1@ model, check the Technical Specs of your board at:
11 https://www.arduino.ccfen/Main/Products
12
13 modified & May 2014
14 by Scott Fitzgerald
15 modified 2 Sep 2816
1& by Arturc Guadalupi
17 modified 8 Sep 2816
18 by Colby Mewman
19
26 This example code is in the public domain.
21
22 https://www.arduino.cc/en/Tutorial /BuiltInExamples/Blink
23 *
24
25 #include <Arduing.h>
26
27 int iBlinkSpeed = 5@8; J# the blink speed in milli seconds
28
29 // the setup function runs once when you press reset or power the board
e void setup() {
31 4/ initialize digital pin LED_BUILTIN &s &an output.
32 pinMode{LED_BUILTIN, OUTPUT);
33 3
34
35 /f the loop function runs over and over again forever
36 void loop() {
37 digitalWrite(LED BUILTIN, HIGH); // turn the LED on (HIGH iz the wvoltage lewvel)
38 delay(iBlinkSpeed); ff wait for & second
39 digitalblrite{LED_BUILTIN, LOW}; J// turn the LED off by making the woltage LOW
4@ delay(iBlinkSpeed); /f wait for & second
41
42 3

And see, blink speed has changed.
What can we see more on GitHub? See the repository head line:

@ Demo1 Public < Pin ® Unwatch 1
1 Z 3 4 5 6

¥ main ~ ¥ 1branch) 0tags Go to file Add file ~ <> Code ~

7 8 9 10 11

Your Name v1.01 - Changed blink speed to 500 ms 961720e 26 minutes ago @10 commits

The existing branches

The default branch

The releasees and the tags

A got file button

An add file button

A code button for cloning
Your Name

Changes made in this commit
. Changes made in this commit
10. Changes made in this commit
11. All commits

WooONUL A WNR

Commits
¥ main ~
-0 Commits on Sep 21, 2023

v1.01 - Changed blink speed to 500 ms jinl

9617288 <)
Your Name committed 33 minutes ago

Created README.md file .. Verified @ ebzesis <>

(@ wecandm committed 45 minutes ago

v1.0 - Featurel merged D sefrrsa <>
Your Name committed 2 hours ago

v0.3 - Made blink faster 0 aas3ane <>
Your Name committed 3 hours ago

v0.5 - Featurel - blinkspeed as a variable L‘.:' 625F1FF (D
Your Name committed 3 hours ago

v0.2 - Demol.c added #include <Arduino.h> 3 a7ebasc <>
Your Name committed 4 hours ago

v0.1 - Demol.c changed with Arduino blink sketch L‘.:' 214702 (D
Your Name committed 4 hours ago

Revert "v0.1 - Demol.c changed with Aduino blink sketch” ... M cse9e <
Your Name committed 4 hours ago

v0.1 - Demol.c changed with Aduino blink sketch L‘.:' ed24866 | (D
Your Name committed 4 hours ago

v0.0 - Initial commit 0 arizpas <>

Vour Name committed 5 hours ago

14. Remote repository on a local server.
Let us create a local Git Repository on a local server. Use this tutorial or this one.

Or install the Bonobo Git Server for Windows.

Or install GIT this way.

| will choose for the last one, and follow the instructions in the installation documentation.

https://github.com/PowerShell/Win32-OpenSSH/wiki/Setting-up-a-Git-server-on-Windows-using-Git-for-Windows-and-Win32_OpenSSH
https://medium.com/@piteryo7/how-to-set-up-git-server-on-local-network-windows-tutorial-7ec5cd2df3b1
https://bonobogitserver.com/
https://www.opensourceforu.com/2021/01/how-to-install-and-configure-git-on-a-windows-server/

15. VS Code Git Status labels.

Added This is a new file that has been added to the repository

Modified An existing file has been changed

Deleted A file has been deleted

Untracked The file is new or has been changed but has not been added to the staging area
Conflict There is a conflict in the file

Renamed The file has been renamed

mOocozg>»

