
Git Workflow from installation to repository

Autor : Wim Cranen (wim.cranen@wccandm.nl – https://www.wccandm.nl)

Date : October 06, 2023

Status : concept

Version : 0.6

We will cover local repositories and remote repositories on GitHub, on your own local server and on

a remote server.

Inhoud
Git Workflow from installation to repository .. 1

Inhoud ... 1

1. What is GIT, and why GIT? ... 2

2. Installation of GIT. .. 3

3. GIT initialize. ... 4

4. Your first (local) repository. .. 6

5. Create files. ... 7

6. Change and track changes. ... 10

7. Create a new branch. ... 14

8. Merge branches. ... 17

9. Fork a repository. .. 21

10. The .gitignore file ... 22

11. SSH key .. 23

12. Remote repositories. .. 28

13. Remote repository on GitHub. ... 29

14. Remote repository on a local server. ... 35

15. VS Code Git Status labels. .. 36

mailto:wim.cranen@wccandm.nl
https://www.wccandm.nl/

1. What is GIT, and why GIT?
Git is a version control system (vcs) originally developed for software development. But can be used

for all text based change tracking. And that is what Git does. It tracks changes, not files.

Have close look at the following website. Especially the chapter 1.2 where the mechanism is

explained and chapter 1.3 where versions, work area, staging area and repository are explained.

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

2. Installation of GIT.
Go to the GIT website and download the installer for your operating system. This example is for

Windows.

Start the installer. In this case the filename is: Git-2.42.0.2-64-bit.exe.

Change no options during installing, just click next until finish.

Git can be operated in the Windows power shell. Open power shell and navigate to your Documents

folder (example).

https://git-scm.com/

3. GIT initialize.

In the power shell window type the following command:
Git --version

Or just git

This gives a whole lot of information about git and ensures that the installation is ok.

Then we have to initialize GIT, by giving the name and email address of the user. Insert the following

command:
git config --global user.name "Your Name"

And verify with this command if the user name is set correctly:
git config --global user.name

Then you have to set your email address with:
git config --global user.email "your.name@domain.com"

And verify with this command if your email address is set correctly:

git config --global user.email

Now your git environment is ready for operation.

With the git config --list command, you can list all global variables for GIT.

4. Your first (local) repository.
In the documents folder create an new folder with the name “GitRepos” change to that folder and in

the GitRepos folder create an new folder with the name “Demo1” and change into that folder with

power shell.

Enter the command: git status.

The answer is: this is not a git repository. So we are going to create it.

Give the command: git init and then git status again.

Now that GIT is initialized, and we see that we are on the master branch and no commits have been

done yet and there is nothing to commit because the directory or folder is empty.

If we give the ls command, then we see that the folder is empty… but how can we track changes

then and how does git know that there is nothing to commit? Give the ls -h command. This

command also shows the hidden files. Now we see that there is a hidden folder called “.git”.

This .git folder contains all information that git saves.

If you want to get rid of the git information, just give the command rm .git and answer with “Y”.

5. Create files.
We are going to create two files with the following commands:
ni demo1.c

ni demo2.c

Then we give the ls -force command. This gives all files, also the hidden ones.

As we can see, the .git directory (d and h Mode) and two files are present (archive mode).

Then we want to know the status of git. Give the command git status.

We are still on the master branch, there are still no commits and we have two untracked files.

Remember we are in the working directory. To have git trace the changes of these files the have to

be moved to the staging area. If the files are in the staging area, we can do a commit to bring the

files in the repository. Let’s go.

By adding the files, we bring the files in the staging area. We can add files with the following

commands:

git add filename (this adds only the specific filename)

git add directory (this adds only the specific directory)

git add . (this adds everything)

We are going to add everything and do a git status after that.

The we see that we are still on the master branch, no commits done, but there are changes that can

be committed. The two files are tracked and are in the staging area.

Now we can do a commit with the following command:

git commit -m “message” and ask for the status and a log.

We give the command: git commit -m "v0.0 - Initial commit"

This commits the files to the repository with the message (-m): v0.0 – Initial Commit.

Then: git status

That gives us the information that we are on the master branch and that there is nothing to commit.

Then: git log

Gives us the information about the author, the date and the commit message.

Please be as specific as possible with this message, which can go over several lines.

Also see that this commit has got a code or a hash, in this case:
af12b458e50f0200938c3f3ed9225bdd017db248

Then there is information about HEAD -> master, where HEAD refers to the current branch.

All ready for now, the repository is clean and ready.

6. Change and track changes.
Now we are going to make changes in one of the files. Open your “Demo1” directory in the windows

explorer and with a right mouse click start Notepad or Notepad++ with the “Demo1.c” file.

Add the following information to it and save and close the file.

The text can be copied from here.

Then we do a ls -force and a git status.

https://create.arduino.cc/example/builtin/01.Basics%5CBlink/Blink/preview

We see that the file “Demo1.c” has got some content (1275 bytes), we see that we are still in the

master branch, there are changes but they are not staged and nothing to commit. So we are going to

stage the Demo1.c file.
git add demo1.c

git status

git commit -m “v0.1 – Demo1.c changed with Arduino blink sketch”

git status

git log

If you made a mistake in the commit, you can revert the commit with:

git revert <commit_hash> --no-edit This will also revert your changes.

if you only want to undo the last commit, give:

git reset --soft HEAD~1 This will undo the commit but leaves your changes intact.

in the log, you can see that I made a revert, nothing keeps unseen, everything is tracked.

Now we are going to make a slight change in Demo1.c. Add the following:

See the yellow line.

Then we do a ls -force and a git status.

We see that the file “Demo1.c” has got more content (1299 bytes), we see that we are still in the

master branch, there are changes but they are not staged and nothing to commit. So we are going to

stage the Demo1.c file again.
git add demo1.c

git status

git commit -m “v0.2 – Demo1.c added #include <Arduino.h>”

git status

git log

You can see that the log is growing and changes are nicely tracked.
A nicer log can be called by:
git log --graph --abbrev-commit --decorate --format=format:'%C(bold

blue)%h%C(reset) - %C(bold cyan)%aD%C(reset) %C(bold

green)(%ar)%C(reset)%C(auto)%d%C(reset)%n'' %C(white)%s%C(reset)

%C(dim white)- %an%C(reset)'

Or:
git log --graph --abbrev-commit --decorate --format=format:'%C(bold

blue)%h%C(reset) - %C(bold green)(%ar)%C(reset) %C(white)%s%C(reset)

%C(dim white)- %an%C(reset)%C(auto)%d%C(reset)' --all

These can be kept in aliases.

git config --global alias.log1 "log --graph --abbrev-commit --

decorate --format=format:'%C(bold blue)%h%C(reset) - %C(bold

cyan)%aD%C(reset) %C(bold

green)(%ar)%C(reset)%C(auto)%d%C(reset)%n''

%C(white)%s%C(reset) %C(dim white)- %an%C(reset)'"

Or:

git config --global alias.log2 "log --graph --abbrev-commit --

decorate --format=format:'%C(bold blue)%h%C(reset) - %C(bold

green)(%ar)%C(reset) %C(white)%s%C(reset) %C(dim white)-

%an%C(reset)%C(auto)%d%C(reset)' --all"

The you can give the commands:

git log1

Or

git log2

And that gives the following results:

7. Create a new branch.
Lets make a new branch to test a new feature. The existing branch stays intact. Issue the following

commands:

git branch feature1

git checkout feature1

We see that we switched to feater1 branch

git status

We are on feature1 nothing to commit.

We are going to make changes lines 26/27, 38 and 40.

Then we do a ls -force and a git status.

The file demo1.c has changed again and now counts 1388 bytes.

We are now on the feature branch, the file demo1.c is not staged, nothing to commit.

We are going to add demo1.c to the staging area.

git add demo1.c

git status

git commit -m “v0.2 – Demo1.c added #include <Arduino.h>”

git status

git log

We can see that we are on the feature1 branch (HEAD is pointing to this).

Lets do a git log --graph.

To see a graphical overview of the branches.

Go back to the master branch.

git checkout master

Open the demo1.c file and see that the changes in lines 26/27, 38 and 40 are gone.

Now make some changes, change 1000 by 500 to make it faster.

Stage the demo1.c file and commit the change. Then perform a git log2.

Now you can see the branch feature1 going away from the master branch.

HEAD is pointing to master again.

8. Merge branches.
Before we going to merge the branches, we want to show the differences from master to feature1

branch. Issue the following command:

git diff master..feature1

This gives us an overview of the changes. Merging these branches will give us some merge conflicts.

We see that there are two branches and master is the current branch.

Be sure to be on the master branch (git status or git branch) and issue the following

command:

git merge feature1

We see that an automatic merge failed and we have to fix the conflicts.

Now the git diff command can help us.

This shows us that in the master branch the delay has a number and in the feature branch the delay

has a variable.

Let us open the demo1.c file in the master and fix the problem:

This would be ok:

Now lets us stage the demo1.c file, commit it, look at the status and perform a log2.

The result is here below.

We can see that the feature1 branch is closed and merged into the master branch.

Also HEAD is pointing to the master branch again.

9. Fork a repository.

10. The .gitignore file.
GIT has a file with a special purpose. This file is called .gitignore with no extensions.

The purpose of .gitignore files is to ensure that certain files not tracked by Git remain untracked.

To stop tracking a file that is currently tracked, use git rm --cached to remove the file from the index.
The filename can then be added to the .gitignore file to stop the file from being reintroduced in later
commits.

Git does not follow symbolic links when accessing a .gitignore file in the working tree. This keeps
behavior consistent when the file is accessed from the index or a tree versus from the filesystem.

Why? Think of Wi-Fi or other credentials, but also other files that we do not want to be tracked.

11. SSH key.

Open PowerShell (PS) as an administrator and issue the following commands:
If no .ssh/id_rsa folder exists.
> cd c:\users\username

> mkdir .ssh

> cd .ssh

> mkdir id_rsh

If the folders .ssh and id_rsa exists continue with:
> ssh-keygen -t rsa -b 4096 -C “your.email@domain.com”

The email address to be used is the email address that you use to login to GitHub.
Enter the location: c:\users\username\.ssh\id_rsa\testkey1
Enter password: … (if any).
Wait for the message: key generated successfully.

Open the folder you used to store the file in (location her above).
And you will find two files:
testkey1 (your private key)

testkey1.pub (your public key)

mailto:your.email@domain.com

Open testkey1.pub in notepad and switch word wrap on.
You can see that the content of the file starts with “ssh-rsa” and ends with your.email@domain.com

Copy this content to the clipboard.
Login to GitHub.
Go to your logo in the upper right corner of the opening screen.

mailto:your.email@domain.com

In the new window go to “SSH and GPG keys” in the left.

Here you can see your SSH keys, if any exists. Click “New Key”

Under title, give it an name (testkey1) and paste the content of your public key in the “key” windows.
Remove the last space.

Click the “Add SSH key” button (you are required to enter your password and confirm). Done!!.

If you want to know more about the SSH keys, click the instruction to check out the guides.

Now you have to make sure that the local GIT knows about your private key. Thes keys match
together and the pair is the mathematical prove that it is generated with the public key information.

Start the SSH-agent in the background (if you use Windows, do this in GIT bash).

GIT bash needs forward slashes!!

See also https://www.youtube.com/watch?v=RGOj5yH7evk&t=1230

https://www.youtube.com/watch?v=RGOj5yH7evk&t=1230

12. Remote repositories.
Why would we want to have a remote repository?

1. To make it possible for a team to work on a project.

2. To have backups. Push regularly (at least every change) to the remote repository and pull the

 changes from your teammates.

This makes sure you are working with a clean project and maybe overcome merge conflicts.

Where do we want to create a remote repository?

There is more than one solution:

1. On GitHub.

2. On a local server.

3. On a remote server

13. Remote repository on GitHub.
Open your GitHub account or create on if there is no account.

Create a new repository with the same name as your local repository.

Goto the “+” sign and click “New Repository”.

And click “Create Repository”.

If we issue the following sequence:

git remote add origin https://github.com/wccandm/Demo1.git

git branch -M main

git push -u origin main

We get an error:

We have an issue with the SSL certificate. Issue the following command and try again:

git config --global http.sslbackend schannel

You have to authenticate in your browser. Do this and…

Your repository exists on GitHub.

Let us create the README.md file in GitHub and pull the project to the local repository.

While the remote repository is known, we just have to issue this command:

git pull

Perform git log2 command:

You can see that a README.md file was created on the origin/main (=GitHub).

While the README.md file is in our local repository a pull must have been performed.

https://github.com/wccandm/Demo1.git

Now let is change demo1.c in our local repository, change the blinking speed to 500.

Stage and commit the file.

See that the master branch name changed to main.

Perform a git log2.

Let us open the demo1.c file on GitHub.

Then push the local repository to GitHub and again open the demo1.c file on GitHub.

And see, blink speed has changed.

What can we see more on GitHub? See the repository head line:

1. The existing branches

2. The default branch

3. The releasees and the tags

4. A got file button

5. An add file button

6. A code button for cloning

7. Your Name

8. Changes made in this commit

9. Changes made in this commit

10. Changes made in this commit

11. All commits

14. Remote repository on a local server.
Let us create a local Git Repository on a local server. Use this tutorial or this one.

Or install the Bonobo Git Server for Windows.

Or install GIT this way.

I will choose for the last one, and follow the instructions in the installation documentation.

https://github.com/PowerShell/Win32-OpenSSH/wiki/Setting-up-a-Git-server-on-Windows-using-Git-for-Windows-and-Win32_OpenSSH
https://medium.com/@piteryo7/how-to-set-up-git-server-on-local-network-windows-tutorial-7ec5cd2df3b1
https://bonobogitserver.com/
https://www.opensourceforu.com/2021/01/how-to-install-and-configure-git-on-a-windows-server/

15. VS Code Git Status labels.

A Added This is a new file that has been added to the repository
M Modified An existing file has been changed
D Deleted A file has been deleted
U Untracked The file is new or has been changed but has not been added to the staging area
C Conflict There is a conflict in the file
R Renamed The file has been renamed

